Advertisement

Voxel Phantoms for Internal Dosimetry

  • Maria ZanklEmail author
  • Helmut Schlattl
  • Nina Petoussi-Henss
  • Christoph Hoeschen
Chapter

Abstract

The calculation of radiation dose from internally incorporated radionuclides is based on so-called absorbed fractions (AFs) and specific absorbed fractions (SAFs). AFs specify the fraction of energy emitted by radioactivity in a given (source) organ that is absorbed in the source organ itself and in other (target) organs. SAFs are AFs divided by target organ mass.

Keywords

Source Organ Organ Mass Voxel Model Urinary Bladder Wall Internal Dosimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Loevinger, R., Budinger, T. and Watson, E. MIRD primer for absorbed dose calculations. (1988).Google Scholar
  2. 2.
    Bolch, W. E., Eckerman, K. F., Sgouros, G. and Thomas, S. R. MIRD Pamphlet No. 21: A generalized schema for radiopharmaceutical dosimetry – standardization of nomenclature. J. Nucl. Med. 50, 477–484 (2009).Google Scholar
  3. 3.
    Cristy, M. and Eckerman, K. F. Specific absorbed fractions of energy at various ages from internal photon sources, Part I: Methods. TM-8381/V1. (1987).Google Scholar
  4. 4.
    Snyder, W. S., Ford, M. R. and Warner, G. G. Estimates of specific absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5, Revised. (1978).Google Scholar
  5. 5.
    Snyder, W. S., Ford, M. R., Warner, G. G. and Fisher, H. L. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee (MIRD). Pamphlet No. 5. J. Nucl. Med. 10(Suppl. 3), 7–52 (1969).Google Scholar
  6. 6.
    Cristy, M. and Eckerman, K. F. SEECAL 2.0. Program to calculate age-dependent specific effective energies. ORNL/TM-12351 (1993).Google Scholar
  7. 7.
    Fill, U., Zankl, M., Petoussi-Henss, N., Siebert, M. and Regulla, D. Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Phys. 86, 253–272 (2004).CrossRefPubMedGoogle Scholar
  8. 8.
    Petoussi-Henss, N., Zankl, M., Fill, U. and Regulla, D. The GSF family of voxel phantoms. Phys. Med. Biol. 47, 89–106 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    Zankl, M., Becker, J., Fill, U., Petoussi-Henß, N. and Eckerman, K. F. GSF male and female adult voxel models representing ICRP Reference Man – the present status. Proceedings of the Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World. Chattanooga, TN (2005).Google Scholar
  10. 10.
    Zankl, M., Eckerman, K. F. and Bolch, W. E. Voxel-based models representing the male and female ICRP reference adult - the skeleton. Radiat. Prot. Dosim. 127, 174–186 (2007).CrossRefGoogle Scholar
  11. 11.
    Zankl, M. and Wittmann, A. The adult male voxel model “Golem” segmented from whole body CT patient data. Radiat. Environ. Biophys. 40, 153–162 (2001).CrossRefPubMedGoogle Scholar
  12. 12.
    Zaidi, H. and Xu, X. G. Computational anthropomorphic models of the human anatomy: The path to realistic Monte Carlo modeling in radiological sciences. Ann. Rev. Biomed. Eng. 9, 471–500 (2007).CrossRefGoogle Scholar
  13. 13.
    Xu, X. G. and Eckerman, K. F. Handbook of Anatomical Models for Radiation Dosimetry. (Boca Raton, London, New York: Taylor & Francis) (2010) ISBN 978 1 4200 5979 3.Google Scholar
  14. 14.
    Jones, D. G. A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiat. Prot. Dosim. 79, 411–414 (1998).Google Scholar
  15. 15.
    Petoussi-Henss, N. and Zankl, M. Voxel anthropomorphic models as a tool for internal dosimetry. Radiat. Prot. Dosim. 79, 415–418 (1998).Google Scholar
  16. 16.
    Smith, T., Petoussi-Henss, N. and Zankl, M. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a ‘family’ of phantoms. Eur. J. Nucl. Med. 27, 1387–1398 (2000).CrossRefPubMedGoogle Scholar
  17. 17.
    Yoriyaz, H., Santos, A. D., Stabin, M. G. and Cabezas, R. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code. Med. Phys. 27, 1555–1562 (2000).CrossRefPubMedGoogle Scholar
  18. 18.
    Smith, T. J., Phipps, A. W., Petoussi-Henss, N. and Zankl, M. Impact on internal doses of photon SAFs derived with the GSF adult male voxel phantom. Health Phys. 80, 477–485 (2001).CrossRefPubMedGoogle Scholar
  19. 19.
    Stabin, M. G. and Yoriyaz, H. Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys. 82, 21–44 (2002).CrossRefPubMedGoogle Scholar
  20. 20.
    Zankl, M., Petoussi-Henss, N., Fill, U. and Regulla, D. The application of voxel phantoms to the internal dosimetry of radionuclides. Radiat. Prot. Dosim. 105, 539–548 (2003).Google Scholar
  21. 21.
    Petoussi-Henss, N., Zankl, M. and Nosske, D. Estimation of patient dose from radiopharmaceuticals using voxel models. Cancer Biother. Radiopharm. 20, 103–109 (2005).CrossRefPubMedGoogle Scholar
  22. 22.
    Petoussi-Henss, N., Li, W. B., Zankl, M. and Eckerman, K. F. SEECAL utilizing voxel-based SAFs. Radiat. Prot. Dosim. 127, 214–219 (2007).CrossRefGoogle Scholar
  23. 23.
    Chao, T. C. and Xu, X. G. Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code: internal electron emitters. Phys. Med. Biol. 46, 901–927 (2001).CrossRefPubMedGoogle Scholar
  24. 24.
    ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 (2007).Google Scholar
  25. 25.
    ICRP. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann ICRP 32(3–4) (2002).Google Scholar
  26. 26.
    Dimbylow, P. J. The development of realistic voxel phantoms for electromagnetic field dosimetry. Proceedings of Workshop on Voxel Phantom Development. Chilton, UK, pp. 1–7 (1996).Google Scholar
  27. 27.
    Jones, D. G. A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation. Radiat. Prot. Dosim. 72, 21–29 (1997).Google Scholar
  28. 28.
    Kramer, R., Vieira, J. W., Khoury, H. J., Lima, F. R. A. and Fuelle, D. All about MAX: A male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys. Med. Biol. 48, 1239–1262 (2003).CrossRefPubMedGoogle Scholar
  29. 29.
    Kramer, R., Khoury, H. J., Vieira, J. W., Loureiro, E. C. M., Lima, V. J. M., Lima, F. R. A. and Hoff, G. All about FAX: a female adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys. Med. Biol. 49, 5203–5216 (2004).CrossRefPubMedGoogle Scholar
  30. 30.
    Dimbylow, P. Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields. Phys. Med. Biol. 50, 1047–1070 (2005).CrossRefPubMedGoogle Scholar
  31. 31.
    Kramer, R., Khoury, H. J., Vieira, J. W. and Lima, V. J. M. MAX06 and FAX06: update of two adult human phantoms for radiation protection dosimetry. Phys. Med. Biol. 51, 3331–3346 (2006).CrossRefPubMedGoogle Scholar
  32. 32.
    ICRP. Adult reference computational phantoms. ICRP Publication 110 (2009).Google Scholar
  33. 33.
    ICRP. Basic anatomical and physiological data for use in radiological protection: the skeleton. ICRP Publication 70. Ann ICRP 25(2) (1995).Google Scholar
  34. 34.
    ICRU. Photon, electron, proton and neutron interaction data for body tissues. ICRU Report 46 (1992).Google Scholar
  35. 35.
    Kawrakow, I. and Rogers, D. W. O. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. PIRS Report No. 701 (2003).Google Scholar
  36. 36.
    Cristy, M. and Eckerman, K. F. Specific absorbed fractions of energy at various ages from internal photon sources, Part V: Fifteen-year-old male and adult female. TM-8381/V5 (1987).Google Scholar
  37. 37.
    Cristy, M. and Eckerman, K. F. Specific absorbed fractions of energy at various ages from internal photon sources, Part VII: Adult male. TM-8381/V7. (1987).Google Scholar
  38. 38.
    ICRP. Limits for intakes of radionuclides by workers. Part 1. ICRP Publication 30 (1979).Google Scholar
  39. 39.
    ICRP. Human alimentary tract model for radiological protection. ICRP Publication 100. Ann ICRP 36(1–2) (2006).Google Scholar
  40. 40.
    ICRP Radiation dose to patients from radiopharmaceuticals. ICRP Publication 53. Ann ICRP 18(1–4) (1987).Google Scholar
  41. 41.
    Petoussi-Henss, N., Bolch, W. E., Zankl, M., Sgouros, G. and Wessels, B. Patient-specific scaling of reference S-values for cross-organ radionuclide S-values: what is appropriate? Radiat. Prot. Dosim. 127, 192–196 (2007).CrossRefGoogle Scholar
  42. 42.
    Zubal, I. G., Harrell, C. R., Smith, E. O., Rattner, Z., Gindi, G. and Hoffer, P. B. Computerized three-dimensional segmented human anatomy. Med. Phys. 21, 299–302 (1994).CrossRefPubMedGoogle Scholar
  43. 43.
    Snyder, W. S., Ford, M. R., Warner, G. G. and Watson, E. E. “S” absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet 11, Revised (1975).Google Scholar
  44. 44.
    Cristy, M. Applying the reciprocal dose principle to heterogeneous phantoms: Practical experience from Monte Carlo studies. Phys. Med. Biol. 28, 1289–1303 (1983).CrossRefPubMedGoogle Scholar
  45. 45.
    Kramer, R., Zankl, M., Williams, G. and Drexler, G. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods, Part I: The male (Adam) and female (Eva) adult mathematical phantoms. GSF Report S-885 (1982).Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Maria Zankl
    • 1
    Email author
  • Helmut Schlattl
    • 1
  • Nina Petoussi-Henss
    • 1
  • Christoph Hoeschen
    • 1
  1. 1.Department of Medical Radiation Physics and DiagnosticsHelmholtz Zentrum München – German Research Center for Environmental HealthNeuherbergGermany

Personalised recommendations