Skip to main content

An ACO Based Approach for Detection of an Optimal Attack Path in a Dynamic Environment

  • Conference paper
Distributed Computing and Networking (ICDCN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5935))

Included in the following conference series:

Abstract

Attack graph is a tool to analyze multi-stage, multi-host attack scenarios in a network. Each attack scenario is depicted by an attack path which is essentially a series of exploits with a severity score that presents a comparative desirability of a particular network service. In an attack graph with a large number of attack paths, it may not be feasible for the administrator to plug all the vulnerabilities. Moreover, in a dynamic environment where the severity of an exploit changes with time, a framework is required that detects an optimal attack path or most favored path from a given attack graph in an environment. This paper proposes a framework for finding out an optimal attack path using Ant Colony Optimization (ACO) technique under a dynamic environment. Given an attack graph and the severity scores of the exploits, an optimal attack path is detected using customized ACO algorithms. A case study has been presented to demonstrate the efficacy of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Measuring network security using dynamic bayesian network (2008), http://csrc.nist.gov/staff/Singhal/qop2008_DBN_paper.pdf (accessed on June 2009)

  2. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analysis. In: Proceedings of CCS 2002: 9th ACM Conference on Computer and Communications Security, pp. 217–224. ACM Press, New York (2002)

    Chapter  Google Scholar 

  3. Gutjahr, W.J.: Aco algorithms with guaranteed convergence to the optimal solution. Information Processing Letters 82(3), 145–153 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Maniezzo, V., Gambardella, L.M., Luigi, F.D.: Ant colony optimization (2004), http://citeseer.ist.psu.edu/644427.html ; http://www.idsia.ch/~luca/aco2004.pdf

  5. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE Security & Privacy Magazine 4(6), 85–89 (2006)

    Article  Google Scholar 

  6. Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network hardening via exploit dependency graph. In: Omondi, A.R., Sedukhin, S.G. (eds.) ACSAC 2003. LNCS, vol. 2823. Springer, Heidelberg (2003)

    Google Scholar 

  7. Pamula, J., Jajodia, S., Ammann, P., Swarup, V.: A weakest-adversary security metric for network configuration secuirty analysis. In: Proceedings of 2nd ACM Workshop on Quality of Protection, pp. 31–38. ACM Press, New York (2006)

    Chapter  Google Scholar 

  8. Ritchey, R., O’Berry, B., Noel, S.: Representing tcp/ip connectivity for topological analysis of network security. In: Proceedings of the 18th Annual Computer Security Applications Conference, ACSAC 2002 (2002)

    Google Scholar 

  9. Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnerabilities. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, May 2000, pp. 156–165 (2000)

    Google Scholar 

  10. Sheynar, O.: Scenario Graphs and Attack Graphs. PhD thesis, Carnegei Mellon University, USA (April 2004)

    Google Scholar 

  11. Stutzle, T., Dorigo, M.: A short convergence proof for a class of ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation 2002, 358–365 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghosh, N., Nanda, S., Ghosh, S.K. (2010). An ACO Based Approach for Detection of an Optimal Attack Path in a Dynamic Environment. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds) Distributed Computing and Networking. ICDCN 2010. Lecture Notes in Computer Science, vol 5935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11322-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11322-2_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11321-5

  • Online ISBN: 978-3-642-11322-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics