Summary
The use of Dirichlet-to-Neumann operators as transmission conditions is known to yield optimal Schwarz methods that converge in a finite number of iterations when the subdomain decomposition has tree-like connectivity. However, it remains an open problem whether it is possible to construct a finitely terminating algorithm for arbitrary decompositions. In this article, we construct a Schwarz method that converges in exactly two steps for any decomposition into subdomains with minimal overlap. In this method, every subdomain must communicate with all other subdomains, but only data along subdomain boundaries need to be exchanged.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
E. Efstathiou and M.J. Gander. Why restricted additive Schwarz converges faster than additive Schwarz. BIT, 43(suppl.):945–959, 2003.
M.J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal., 44(2):699–731 (electronic), 2006.
M.J. Gander, F. Magoules, and F. Nataf. Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput., 24:38–60, 2002.
F. Magoulès, F. Roux, and S. Salmon. Optimal discrete transmission conditions for a nonoverlapping domain decomposition method for the Helmholtz equation. SIAM J. Sci. Comput., 25(5):1497–1515 (electronic), 2004.
F. Nataf and F. Rogier. Factorization of the convection-diffusion operator and the Schwarz algorithm. Math. Models Methods Appl. Sci., 5:67–93, 1995.
F. Nataf, F. Rogier, and E. De Sturler. Optimal interface conditions for domain decomposition methods. Technical Report, École Polytech., Paris, 1994.
F. Nier. Remarques sur les algorithmes de décomposition de domaines. In Seminaire: Équations aux Dérivées Partielles, 1998–1999, Exp. No. IX, 26pp., Sémin. Équ. Dériv. Partielles. École Polytech., Palaiseau, 1999.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gander, M.J., Kwok, F. (2011). Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11304-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-11304-8_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11303-1
Online ISBN: 978-3-642-11304-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)