Skip to main content

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XIX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 78))

  • 1342 Accesses

Summary

The use of Dirichlet-to-Neumann operators as transmission conditions is known to yield optimal Schwarz methods that converge in a finite number of iterations when the subdomain decomposition has tree-like connectivity. However, it remains an open problem whether it is possible to construct a finitely terminating algorithm for arbitrary decompositions. In this article, we construct a Schwarz method that converges in exactly two steps for any decomposition into subdomains with minimal overlap. In this method, every subdomain must communicate with all other subdomains, but only data along subdomain boundaries need to be exchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. E. Efstathiou and M.J. Gander. Why restricted additive Schwarz converges faster than additive Schwarz. BIT, 43(suppl.):945–959, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal., 44(2):699–731 (electronic), 2006.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.J. Gander, F. Magoules, and F. Nataf. Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput., 24:38–60, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Magoulès, F. Roux, and S. Salmon. Optimal discrete transmission conditions for a nonoverlapping domain decomposition method for the Helmholtz equation. SIAM J. Sci. Comput., 25(5):1497–1515 (electronic), 2004.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Nataf and F. Rogier. Factorization of the convection-diffusion operator and the Schwarz algorithm. Math. Models Methods Appl. Sci., 5:67–93, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Nataf, F. Rogier, and E. De Sturler. Optimal interface conditions for domain decomposition methods. Technical Report, École Polytech., Paris, 1994.

    Google Scholar 

  7. F. Nier. Remarques sur les algorithmes de décomposition de domaines. In Seminaire: Équations aux Dérivées Partielles, 1998–1999, Exp. No. IX, 26pp., Sémin. Équ. Dériv. Partielles. École Polytech., Palaiseau, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Gander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gander, M.J., Kwok, F. (2011). Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11304-8_9

Download citation

Publish with us

Policies and ethics