Summary
For a class of multilevel preconditioners based on non-nested meshes, we study numerically several selected prolongation and restriction operators. Robustness with respect to the mesh size and to jumps in the coefficients is demonstrated.
Keywords
- multilevel preconditioners
- geometric and algebraic multigrid methods
- finite elements
- non-nested meshes
- prolongation
* Supported by Bonn International Graduate School in Mathematics
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
Bibliography
R. Blaheta. Algebraic multilevel methods with aggregations: an overview. In I. Lirkov, S. Margenov, and J. Waśniewski, editors, Large-Scale Scientific Computing, volume 3743 of Lecture Notes in Computer Science, pp. 3–14. Springer, 2006.
J.H. Bramble, J.E. Pasciak, and P.S. Vassilevski. Computational scales of Sobolev norms with applications to preconditioning. Math. Comput., 69 (230): 463–480, 2000.
J.H. Bramble, J.E. Pasciak, J. Wang, and J. Xu. Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput., 57 (195): 23–45, 1991.
X. Cai. The use of pointwise interpolation in domain decomposition methods with non-nested meshes. SIAM J. Sci. Comput., 16 (1): 250–256, 1995.
T. Chan, B. Smith, and J. Zou. Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids. Numer. Math., 73 (2): 149–167, 1996.
T. Chan, J. Xu, and L. Zikatanov. An agglomeration multigrid method for unstructured grids. In J. Mandel, C. Farhat, and X.-C. Cai, editors, Domain Decomposition Methods 10, volume 218 of Contemporary Mathematics, pp. 67–81. AMS, Providence, RI, 1998.
P. Clément. Approximation by finite element functions using local regularization. RAIRO Anal. Numér., 9 (R-2): 77–84, 1975.
T. Dickopf and R. Krause. A pseudo-L 2-projection for multilevel methods based on non-nested meshes. INS Preprint No. 0908 (University of Bonn) and ICS Preprint No. 2009-04 (University of Lugano), 2009.
M. Griebel, D. Oeltz, and M.A. Schweitzer. An algebraic multigrid method for linear elasticity. SIAM J. Sci. Comput., 25 (2): 385–407, 2003.
L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput., 54 (190): 483–493, 1990.
O. Steinbach. On a generalized L 2-projection and some related stability estimates in Sobolev spaces. Numer. Math., 90 (4): 775–786, 2002.
K. Stüben. An introduction to algebraic multigrid. In U. Trottenberg et al., editors, Multigrid, pp. 413–532. Academic Press, London, 2001.
A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Springer, Berlin 2005.
P. Vaněk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math., 88 (3): 559–579, 2001.
J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing, 56 (3): 215–235, 1996.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dickopf*, T., Krause, R. (2011). A Study of Prolongation Operators Between Non-nested Meshes. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11304-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-11304-8_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11303-1
Online ISBN: 978-3-642-11304-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)