Skip to main content

A Study of Prolongation Operators Between Non-nested Meshes

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 78)

Summary

For a class of multilevel preconditioners based on non-nested meshes, we study numerically several selected prolongation and restriction operators. Robustness with respect to the mesh size and to jumps in the coefficients is demonstrated.

Keywords

  • multilevel preconditioners
  • geometric and algebraic multigrid methods
  • finite elements
  • non-nested meshes
  • prolongation

* Supported by Bonn International Graduate School in Mathematics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-11304-8_39
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-11304-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Blaheta. Algebraic multilevel methods with aggregations: an overview. In I. Lirkov, S. Margenov, and J. Waśniewski, editors, Large-Scale Scientific Computing, volume 3743 of Lecture Notes in Computer Science, pp. 3–14. Springer, 2006.

    Google Scholar 

  2. J.H. Bramble, J.E. Pasciak, and P.S. Vassilevski. Computational scales of Sobolev norms with applications to preconditioning. Math. Comput., 69 (230): 463–480, 2000.

    MATH  MathSciNet  Google Scholar 

  3. J.H. Bramble, J.E. Pasciak, J. Wang, and J. Xu. Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput., 57 (195): 23–45, 1991.

    MATH  MathSciNet  Google Scholar 

  4. X. Cai. The use of pointwise interpolation in domain decomposition methods with non-nested meshes. SIAM J. Sci. Comput., 16 (1): 250–256, 1995.

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. T. Chan, B. Smith, and J. Zou. Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids. Numer. Math., 73 (2): 149–167, 1996.

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. T. Chan, J. Xu, and L. Zikatanov. An agglomeration multigrid method for unstructured grids. In J. Mandel, C. Farhat, and X.-C. Cai, editors, Domain Decomposition Methods 10, volume 218 of Contemporary Mathematics, pp. 67–81. AMS, Providence, RI, 1998.

    Google Scholar 

  7. P. Clément. Approximation by finite element functions using local regularization. RAIRO Anal. Numér., 9 (R-2): 77–84, 1975.

    Google Scholar 

  8. T. Dickopf and R. Krause. A pseudo-L 2-projection for multilevel methods based on non-nested meshes. INS Preprint No. 0908 (University of Bonn) and ICS Preprint No. 2009-04 (University of Lugano), 2009.

    Google Scholar 

  9. M. Griebel, D. Oeltz, and M.A. Schweitzer. An algebraic multigrid method for linear elasticity. SIAM J. Sci. Comput., 25 (2): 385–407, 2003.

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput., 54 (190): 483–493, 1990.

    MATH  MathSciNet  Google Scholar 

  11. O. Steinbach. On a generalized L 2-projection and some related stability estimates in Sobolev spaces. Numer. Math., 90 (4): 775–786, 2002.

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. K. Stüben. An introduction to algebraic multigrid. In U. Trottenberg et al., editors, Multigrid, pp. 413–532. Academic Press, London, 2001.

    Google Scholar 

  13. A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Springer, Berlin 2005.

    MATH  Google Scholar 

  14. P. Vaněk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math., 88 (3): 559–579, 2001.

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing, 56 (3): 215–235, 1996.

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dickopf* .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dickopf*, T., Krause, R. (2011). A Study of Prolongation Operators Between Non-nested Meshes. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11304-8_39

Download citation