Abstract
The study of optimized Schwarz methods for Maxwell’s equations started with the Helmholtz equation, see [2–4, 11]. For the rot-rot formulation of Maxwell’s equations, optimized Schwarz methods were developed in [1], and for the more general form in [9, 10]. An entire hierarchy of families of optimized Schwarz methods was analyzed in [8], see also [5] for discontinuous Galerkin discretizations and large scale experiments. We present in this paper a first analysis of optimized Schwarz methods for Maxwell’s equations with non-zero electric conductivity. This is an important case for real applications, and requires a new, and fundamentally different optimization of the transmission conditions. We illustrate our analysis with numerical experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
A. Alonso-Rodriguez and L. Gerardo-Giorda. New nonoverlapping domain decomposition methods for the harmonic Maxwell system. SIAM J. Sci. Comput., 28(1):102–122, 2006.
P. Chevalier and F. Nataf. An OO2 (Optimized Order 2) method for the Helmholtz and Maxwell equations. In Tenth International Conference on Domain Decomposition Methods in Science and in Engineering, pp. 400–407, AMS, Providence, RI, 1997.
B. Després. Décomposition de domaine et problème de Helmholtz. C.R. Acad. Sci. Paris, 1(6):313–316, 1990.
B. Després, P. Joly, and J.E. Roberts. A domain decomposition method for the harmonic Maxwell equations. In Iterative methods in linear algebra, pp. 475–484. North-Holland, Amsterdam, 1992.
V. Dolean, M. El Bouajaji, M.J. Gander, S. Lanteri, and R. Perrussel. Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains. In Domain Decomposition Methods in Science and Engineering XIX, 2010. Submitted.
V. Dolean and M.J. Gander. Why classical Schwarz methods applied to hyperbolic systems can converge even without overlap. In Domain Decomposition Methods in Science and Engineering XVIII, pp. 467–476. Springer, 2007.
V. Dolean and M.J. Gander. Can the discretization modify the performance of Schwarz methods? In Domain Decomposition Methods in Science and Engineering XIX, 2010. Submitted.
V. Dolean, L. Gerardo-Giorda, and M.J. Gander. Optimized Schwarz methods for Maxwell equations. SIAM J. Sci. Comput., 31(3):2193–2213, 2009.
V. Dolean, S. Lanteri, and R. Perrussel. A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods. J. Comput. Phys., 227(3):2044–2072, 2008.
V. Dolean, S. Lanteri, and R. Perrussel. Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method. IEEE. Trans. Magn., 44(6):954–957, 2008.
M.J. Gander, F. Magoulès, and F. Nataf. Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput., 24(1):38–60, 2002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dolean, V., Bouajaji, M.E., Gander, M.J., Lanteri, S. (2011). Optimized Schwarz Methods for Maxwell’s Equations with Non-zero Electric Conductivity. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11304-8_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-11304-8_30
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11303-1
Online ISBN: 978-3-642-11304-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)