Advertisement

Sparse Blind Source Deconvolution with Application to High Resolution Frequency Analysis

  • Tryphon T. Georgiou
  • Allen Tannenbaum

Summary

The title of the paper refers to an extension of the classical blind source separation where the mixing of unknown sources is assumed in the form of convolution with impulse response of unknown linear dynamics. A further key assumption of our approach is that source signals are considered to be sparse with respect to a known dictionary, which suggests a mixed L 1/L 2-optimization as a possible formalism for solving the un-mixing problem. We demonstrate the effectiveness of the framework numerically.

Keywords

Impulse Response Sparse Representation Blind Source Separation Toeplitz Matrice Gradient Projection Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  2. 2.
    Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review (2008)Google Scholar
  3. 3.
    Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 489–509 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Candes, E., Tao, T.: Decoding by linear programming. IEEE Transactions on Information Theory 51, 4203–4215 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Candes, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Transactions on Information Theory 52, 5406–5425 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Candes, E., Braun, N., Wakin, M.: Sparse signal and image recovery from compressive samples. In: 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 976–979 (2007)Google Scholar
  7. 7.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Donoho, D.L.: For most large underdetermined systems of linear equations the minimal ‘1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59(6), 797–829 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization. PNAS 100(5), 2197–2202 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007)CrossRefGoogle Scholar
  11. 11.
    Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Processing 12, 906–916 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Haber, E., Ascher, U.M., Oldenburg, D.: On optimization techniques for solving nonlinear inverse problems. Inverse Problems 16, 1263–1280 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hyvarinen, A., Hoyer, P., Oja, E.: Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation. Neural Computation 11(7), 1739–1768 (1999)CrossRefGoogle Scholar
  14. 14.
    Johansen, T.A.: On Tikhonov regularization, bias and variance in nonlinear system identification. Automatica 33(3), 441–446 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Koh, K., Kim, S.J., Boyd, S.: An interior-point method for large-scale l1-regularized logistic regression. J. Mach. Learn. Res. 8, 1519–1555 (2007)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Li, Y., Cichocki, P., Amari, S.: Sparse component analysis and blind source separation of underdetermined mixtures. Neural Computation 16, 1193–1234 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Malioutov, D.M., Cetin, M., Willsky, A.S.: Optimal sparse representations in general overcomplete base. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2004)Google Scholar
  19. 19.
    Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)zbMATHCrossRefGoogle Scholar
  20. 20.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)zbMATHCrossRefGoogle Scholar
  21. 21.
    Romberg, J.K.: Sparse signal recovery via ℓ1 minimization. In: Proceedings of the 40th Annual Conference on Information Sciences and Systems, March 2006, pp. 213–215 (2006)Google Scholar
  22. 22.
    Tsaig, Y., Donoho, D.L.: Breakdown of equivalence between the minimal l1-norm solution and the sparsest solution. Signal Processing 86(3), 533–548 (2006)zbMATHCrossRefGoogle Scholar
  23. 23.
    Wang, J., Sacchi, M.D.: High-resolution wave-equation amplitude-variation-withray- parameter imaging with sparseness constraints. Geophysics 72(1), S11–S18 (2007)CrossRefGoogle Scholar
  24. 24.
    Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13, 863–882 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Tryphon T. Georgiou
    • 1
  • Allen Tannenbaum
    • 2
    • 3
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.Georgia Institute of TechnologyAtlantaUSA
  3. 3.Technion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations