Advertisement

Unimodular Equivalence of Polynomial Matrices

  • P. A. Fuhrmann
  • U. Helmke

Summary

In Gauger and Byrnes [10], a characterization of the similarity of two n ×n matrices in terms of rank conditions was given. This avoids the use of companion or Jordan canonical forms and yields effective decidability criteria for similarity. In this paper, we generalize this result to an explicit characterization when two polynomial models are isomorphic. As a corollary, we derive necessary and sufficient rank conditions for strict equivalence of arbitrary matrix pencils. We also briefly discuss the related equivalence problem for group representations. The techniques we use are based on the tensor products of polynomial models and related characterizations of intertwining maps.

Keywords

Polynomial Model Invariant Factor Matrix Pencil Polynomial Matrice Dimension Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dixon, J.D.: An isomorphism criterion for modules over a principal ideal domain. Lin. and Multilin. Alg., 8, 69–72Google Scholar
  2. 2.
    Edelman, A., Elmroth, E., Kagström, B.: A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations. SIAM J. Matrix Anal. Appl., 18(3), 653–692Google Scholar
  3. 3.
    Frobenius, G.: Über die mit einer Matrix vertauschbaren Matrizen. Sitzungsberichte der Akad. der Wiss. zu BerlinGoogle Scholar
  4. 4.
    Fuhrmann, P.A.: Algebraic system theory: An analyst’s point of view. J. Franklin Inst. 301, 521–540Google Scholar
  5. 5.
    Fuhrmann, P.A.: A Polynomial Approach to Linear Algebra. Springer, New York (1996)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fuhrmann, P.A., Helmke, U.: Tensored polynomial models. Lin. Alg. Appl., 432, 678–721Google Scholar
  7. 7.
    Friedland, S.: Analytic similarity of matrices. In: Byrnes, C.I., Martin, C.F. (eds.) Algebraic and Geometric Methods in Linear Systems Theory. Lectures in Applied Math. Amer. Math. Soc, vol. 18, pp. 43–85 (1980)Google Scholar
  8. 8.
    Friedland, S.: Matrices. A book draft in preparation, http://www2.math.uic.edu/~friedlan/bookm.pdf
  9. 9.
    Gantmacher, F.R.: The Theory of Matrices, vols. I/II, Chelsea Publishing Company, New YorkGoogle Scholar
  10. 10.
    Gauger, M.A., Byrnes, C.I.: Characteristic free, improved decidability criteria for the similarity problem. Linear and Multilinear Algebra, 5, 153–158Google Scholar
  11. 11.
    Hungerford, T.W.: Algebra. Springer, New York (2003)Google Scholar
  12. 12.
    Jacobson, N.: Lie Algebras. Wiley, New YorkGoogle Scholar
  13. 13.
    Krull, W.: Theorie und Anwendung der verallgemeinerten Abelschen Gruppen. Sitzungsberichte der Heidelberger Akad. Wiss. Math.-Naturw. Kl.1 Abh., 1–32Google Scholar
  14. 14.
    Shoda, K.: Über mit einer Matrix vertauschbaren Matrizen. Math. Z. 29, 696–712Google Scholar
  15. 15.
    Vinberg, E.B.: Linear Representations of Groups. Birkhäuser Verlag, BaselGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • P. A. Fuhrmann
    • 1
  • U. Helmke
    • 2
  1. 1.Department of MathematicsBen-Gurion University of the NegevBeer ShevaIsrael
  2. 2.Institut für MathematikUniversität WürzburgWürzburgGermany

Personalised recommendations