An Exact Algorithm for the Maximum Leaf Spanning Tree Problem

  • Henning Fernau
  • Joachim Kneis
  • Dieter Kratsch
  • Alexander Langer
  • Mathieu Liedloff
  • Daniel Raible
  • Peter Rossmanith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5917)


Given an undirected graph G with n nodes, the Maximum Leaf Spanning Tree problem asks to find a spanning tree of G with as many leaves as possible. When parameterized in the number of leaves k, this problem can be solved in time O(4 k poly(n)) using a simple branching algorithm introduced by a subset of the authors [13]. Daligault, Gutin, Kim, and Yeo [6] improved this branching algorithm and obtained a running time of O(3.72 k poly(n)). In this paper, we study the problem from an exact exponential time point of view, where it is equivalent to the Connected Dominating Set problem. For this problem Fomin, Grandoni, and Kratsch showed how to break the Ω(2 n ) barrier and proposed an O(1.9407 n ) time algorithm [10]. Based on some properties of [6] and [13], we establish a branching algorithm whose running time of O(1.8966 n ) has been analyzed using the Measure-and-Conquer technique. Finally we provide a lower bound of Ω(1.4422 n ) for the worst case running time of our algorithm.


Span Tree Leaf Node Internal Node Exact Algorithm Input Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms 14(1), 1–23 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bonsma, P.: Sparse cuts, matching-cuts and leafy trees in graphs. PhD thesis, University of Twente, the Netherlands (2006)Google Scholar
  3. 3.
    Bonsma, P.S., Brueggemann, T., Woeginger, G.J.: A faster FPT algorithm for finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Bonsma, P.S., Zickfeld, F.: Spanning trees with many leaves in graphs without diamonds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems 15(10), 908–920 (2004)CrossRefGoogle Scholar
  6. 6.
    Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT Algorithms and Kernels for the Directed k-Leaf Problem. CoRR abs/0810.4946 (2008); also: J. Comput. System Sci. (2009), doi:10.1016/j.jcss.2009.06.005Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)Google Scholar
  8. 8.
    Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Proc. of 1st ACiD, pp. 1–41. College Publications (2005)Google Scholar
  9. 9.
    Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. Algorithmica 52(2), 153–166 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5) (2009)Google Scholar
  12. 12.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  13. 13.
    Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In: Proc. of 3rd MOBIHOC, pp. 112–122 (2002)Google Scholar
  15. 15.
    Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Park, M.A., Willson, J., Wang, C., Thai, M., Wu, W., Farago, A.: A dominating and absorbent set in a wireless ad-hoc network with different transmission ranges. In: Proc. of 8th MOBIHOC, pp. 22–31. ACM, New York (2007)CrossRefGoogle Scholar
  17. 17.
    Raman, V., Saurabh, S., Sikdar, S.: Improved exact exponential algorithms for vertex bipartization and other problems. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp. 375–389. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Thai, M., Wang, F., Liu, D., Zhu, S., Du. Connected, D.Z.: dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mobil. Comp. 6(7), 721–730 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Henning Fernau
    • 1
  • Joachim Kneis
    • 2
  • Dieter Kratsch
    • 3
  • Alexander Langer
    • 2
  • Mathieu Liedloff
    • 4
  • Daniel Raible
    • 1
  • Peter Rossmanith
    • 2
  1. 1.Universität TrierTrierGermany
  2. 2.Department of Computer ScienceRWTH Aachen UniversityGermany
  3. 3.Laboratoire d’Informatique Théorique et AppliquéeUniversité Paul Verlaine - MetzMetz Cedex 01France
  4. 4.Laboratoire d’Informatique Fondamentale d’OrléansUniversité d’OrléansOrléans Cedex 2France

Personalised recommendations