Advertisement

Planning Problems in Public Transit

  • Ralf BorndörferEmail author
  • Martin Grötschel
  • Ulrich Jäger

Abstract

Every day, millions of people are transported by buses, trains, and airplanes in Germany. Public transit (PT) is of major importance for the quality of life of individuals as well as the productivity of entire regions. Quality and efficiency of PT systems depend on the political framework (state-run, market oriented) and the suitability of the infrastructure (railway tracks, airport locations), the existing level of service (timetable, flight schedule), the use of adequate technologies (information, control, and booking systems), and the best possible deployment of equipment and resources (energy, vehicles, crews). The decision, planning, and optimization problems arising in this context are often gigantic and “scream” for mathematical support because of their complexity.

Keywords

Public Transport Planning Problem Public Transit Service Design Crew Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anbil, R.E., Gelman, B.P., Tanga, R.: Recent advances in crew-pairing optimization at American Airlines. Interfaces 21, 62–74 (1991) CrossRefGoogle Scholar
  2. 2.
    Barnhart, C., Cohn, A.M., Johnson, E.L., Klabjan, D., Nemhauser, G.L., Vance, P.H.: Airline crew scheduling. In: Hall, R.W. (ed.) Handbook of Transportation Science, pp. 517–560. Kluwer, Boston (1999) Google Scholar
  3. 3.
    Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berliner Verkehrsbetriebe AöR (BVG): Business report 2006. http://www.bvg.de/index.php/de/Common/Document/field/file/id/1409 (2006)
  5. 5.
    Bley, A., Pattloch, M.: Modellierung und Optimierung der X-Win Plattform. DFN-Mitteilungen 67, 4–7 (2005) Google Scholar
  6. 6.
    Borndörfer, R., Grötschel, M., Löbel, A.: Duty scheduling in public transit. In: Jäger, W., Krebs, H.-J. (eds.) MATHEMATICS—Key Technology for the Future, pp. 653–674. Springer, Berlin (2003) Google Scholar
  7. 7.
    Borndörfer, R., Grötschel, M., Pfetsch, M.E.: A column-generation approach to line planning in public transport. Transport. Sci. 41(1), 123–132 (2007) CrossRefGoogle Scholar
  8. 8.
    Brieger, S.: Workflow oriented and integrated optimization. Talk at the AGIFORS Conference, May 2005 Google Scholar
  9. 9.
    Cook, T.M.: Sabre soars. ORMS Today 25(3), 27–31 (1998) Google Scholar
  10. 10.
    Daduna, J.R., Wren, A. (eds.): Computer-Aided Transit Scheduling. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1988) zbMATHGoogle Scholar
  11. 11.
    Daduna, J.R., Branco, I., Pinto Paixão, J.M. (eds.): Proc. of the Sixth International Workshop on Computer-Aided Scheduling of Public Transport (CASPT) (Lisbon, Portugal, 1993). Lecture Notes in Economics and Mathematical Systems, vol. 430. Springer, Berlin (1995) Google Scholar
  12. 12.
    Demetrescu, C., Goldberg, A., Johnson, D. (eds.): 9th DIMACS Implementation Challenge—Shortest Path. DIMACS, Piscataway (2006) Google Scholar
  13. 13.
    Desaulniers, G., Solomon, J.D.M.M. (eds.): Column Generation (Gerad 25th Anniversary). Springer, Berlin (2005) Google Scholar
  14. 14.
    Desrochers, M., Rousseau, J.-M. (eds.): Computer-Aided Transit Scheduling. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1992) zbMATHGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Forschungsgesellschaft für Strassen- und Verkehrswesen: Heureka’05: Optimierung in Verkehr und Transport, Cologne (2005) Google Scholar
  19. 19.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979) zbMATHGoogle Scholar
  20. 20.
    Grötschel, M., Krumke, S.O., Rambau, J., Torres, L.M.: Making the yellow angels fly: online dispatching of service vehicles in real time. SIAM News 35(4), 10–11 (2002) Google Scholar
  21. 21.
    Hoffman, K.L., Padberg, M.: Solving airline crew scheduling problems by branch-and-cut. Manag. Sci. 39(6), 657–682 (1993) zbMATHCrossRefGoogle Scholar
  22. 22.
    Klabjan, D., Johnson, E.L., Nemhauser, G.L., Gelman, E., Ramaswamy, S.: Solving large airline crew scheduling problems: random pairing generation and strong branching. Comput. Optim. Appl. 20(1), 73–91 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ledyard, J.O., Olson, M., Porter, D., Swanson, J.A., Torma, D.P.: The first use of a combined-value auction for transportation services. Interfaces 32(5), 4–12 (2002) CrossRefGoogle Scholar
  24. 24.
    Lehner, F.: Der maximale Wirkungsgrad des Personaleinsatzes. Alba Verlag, Düsseldorf (1978) Google Scholar
  25. 25.
    Liebchen, C.: Periodic Timetable Optimization in Public Transport. PhD Thesis, TU Berlin (2006) Google Scholar
  26. 26.
    Littlewood, K.: Forecasting and control of passenger bookings. In: AGIFORS Symposium Proceedings, vol. 12. Nathanya, Israel (1972) Google Scholar
  27. 27.
    Löbel, A.: Optimal vehicle scheduling in public transit. Shaker Verlag, Aachen. PhD Thesis, TU Berlin (1997) Google Scholar
  28. 28.
    Müller-Elscher, M.: Die MICROBUS-Optimierungskomponenten im Überblick. Talk at 1st PSYRUS User Forum, 30.6.2005, Fulda Google Scholar
  29. 29.
    Neumann, M.: Mathematische Preisplanung im ÖPNV. Master’s thesis, TU Berlin (2005) Google Scholar
  30. 30.
    Partner für Berlin Gesellschaft für Hauptstadt-Marketing GmbH. Berlinbrief (2003). ISSN 1611-3284 Google Scholar
  31. 31.
    Rüger, S.: Transporttechnologie städtischer öffentlicher Personenverkehr. Transpress, Berlin (1986) Google Scholar
  32. 32.
    Smith, B.C., Leimkuhler, J.F., Darrow, R.M.: Yield management at American Airlines. Interfaces 22(1), 8–31 (1992) CrossRefGoogle Scholar
  33. 33.
    Sturmowski, A.: Notwendigkeit der Effizienzsteigerung unter Einsatz von IT-Tools. In: Proceedings der IVU-Konferenz IT im ÖPNV am 05.10.2007. IVU Traffic Technologies AG, Berlin (2007) Google Scholar
  34. 34.
    Talluri, K.T., van Ryzin, G.J.: The Theory and Practice of Revenue Management. International Series in Operations Research and Management Science, vol. 68. Kluwer Academic, Boston (2005) Google Scholar
  35. 35.
    Voss, S., Daduna, J. (eds.): Computer-Aided Scheduling of Public Transport. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (2001) zbMATHGoogle Scholar
  36. 36.
    Wilson, N.H.M. (ed.): Computer-Aided Transit Scheduling. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (1999) zbMATHGoogle Scholar
  37. 37.
    Yu, G. (ed.): Operations Research in the Airline Industry. Kluwer Academic, Dordrecht (1998) Google Scholar
  38. 38.
    Yu, G., Argüello, M., Song, G., McCowan, S.M., White, A.: A new era for crew recovery at Continental Airlines. Interfaces 33(1), 5–22 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ralf Borndörfer
    • 1
    Email author
  • Martin Grötschel
    • 2
  • Ulrich Jäger
    • 3
  1. 1.Dres. Löbel, Borndörfer & Weider GbRBerlinGermany
  2. 2.Zuse Institute BerlinBerlinGermany
  3. 3.WSW mobil GmbHWuppertalGermany

Personalised recommendations