Skip to main content

Oesophagus Tissue Engineering: Future Options in Oesophageal Replacement Through Regenerative Medicine

  • Chapter
  • First Online:
Esophageal and Gastric Disorders in Infancy and Childhood

Abstract

Tissue engineering is a multidisciplinary science in which the principles of engineering are applied to biological sciences with the aim of providing solutions for current clinical problems. Tissue engineering of the oesophagus is a promising alternative to transposition procedures in oesophageal replacement; however, the proposition is challenging due to the anatomical complexity of this tubular organ. In this chapter, the principles and concepts of tissue engineering are discussed with an overview of issues relating to the sourcing of cells, design and selection of scaffolds and polymers, hybrid construct and coculture approaches of tissue engineering and the use of bioreactors. Finally, current research in the field of oesophageal tissue engineering, from in vitro studies of cell biology to in vivo large animal studies, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxena AK. Congenital anomalies of soft tissues: birth defects depending on tissue engineering solutions and present advances in regenerative medicine. Tissue Eng B Rev. 2010;16:455–66.

    Article  Google Scholar 

  2. Cauchi JA, Buick RG, Gornall P, Simms MH, Parikh DH. Oesophageal substitution with free and pedicled jejunum: short- and long-term outcomes. Pediatr Surg Int. 2007;23:11–9.

    Article  CAS  PubMed  Google Scholar 

  3. Arul GS, Parikh D. Oesophageal replacement in children. Ann R Coll Surg Engl. 2008;90(1):7–12.

    Google Scholar 

  4. Yamamoto Y, Nakamura T, Shimizu Y, et al. Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube. J Thorac Cardiovasc Surg. 1999;118:276–86.

    Article  CAS  PubMed  Google Scholar 

  5. Senker J, Enzing C, Joly PB, et al. European exploitation of biotechnology-do government policies help? A recent survey of public spending on biotechnology in Europe suggests that money alone cannot stimulate growth of the sector. Nat Biotechnol. 2000;18:605–8.

    Article  CAS  PubMed  Google Scholar 

  6. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6 Suppl 3:S311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.

    Article  CAS  PubMed  Google Scholar 

  8. Carrel A, Lindbergh C. The culture of organs. New York: Paul B. Hoeber Inc., Harper Brothers; 1938.

    Google Scholar 

  9. Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng. 1999;5:525–31.

    Article  CAS  PubMed  Google Scholar 

  10. Saxena AK, Ainoedhofer H, Höllwarth ME. Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering. Tissue Eng C Methods. 2010;16:109–14.

    Article  CAS  Google Scholar 

  11. Priddle H, Jones DR, Burridge PW, et al. Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells. 2006;24:815–24.

    Article  PubMed  Google Scholar 

  12. Raikwar SP, Mueller T, Zavazava N. Strategies for developing therapeutic application of human embryonic stem cells. Physiology (Bethesda). 2006;21:19–28.

    Article  CAS  Google Scholar 

  13. Tian X, Kaufman DS. Hematopoietic development of human embryonic stem cells in culture. Methods Mol Med. 2005;105:425–36.

    PubMed  Google Scholar 

  14. Trounson A. The production and directed differentiation of human embryonic stem cells. Endocr Rev. 2006;27:208–19.

    Article  PubMed  Google Scholar 

  15. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204.

    Article  CAS  PubMed  Google Scholar 

  16. Cowan CA, Klimanskaya I, McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350:1353–6.

    Article  CAS  PubMed  Google Scholar 

  17. Raghunath J, Salacinski HJ, Sales KM, et al. Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol. 2005;16:503–9.

    Article  CAS  PubMed  Google Scholar 

  18. Riha GM, Lin PH, Lumsden AB, Yao Q. Review: application of stem cells for vascular tissue engineering. Tissue Eng. 2005;11:1535–52.

    Article  CAS  PubMed  Google Scholar 

  19. Risbud MV, Shapiro IM. Stem cells in craniofacial and dental tissue engineering. Orthod Craniofac Res. 2005;8:54–9.

    Article  CAS  PubMed  Google Scholar 

  20. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56:283–94.

    Article  CAS  PubMed  Google Scholar 

  21. Braccini A, Wendt D, Jaquiery C, et al. Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells. 2005;23:1066–72.

    Article  PubMed  Google Scholar 

  22. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    Article  PubMed  Google Scholar 

  23. De Coppi P, Bartsch G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  Google Scholar 

  24. Miki T, Lehmann T, Cai H, et al. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549–59.

    Article  CAS  PubMed  Google Scholar 

  25. Tasso R, Augello A, Cardia M, et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis. 2009;30:150–7.

    Article  CAS  PubMed  Google Scholar 

  26. Saxena AK. Tissue engineering: present concepts and strategies. J Indian Assoc Pediatr Surg. 2005;10:14–9.

    Article  Google Scholar 

  27. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.

    Article  CAS  PubMed  Google Scholar 

  28. Ackbar R, Ainoedhofer H, Gugatschka, Saxena AK. Decellularized ovine esophageal mucosa for esophageal tissue engineering. Tech Health Care. 2012;20:215–23.

    Google Scholar 

  29. Wang H, Heilshorn SC. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater. 2015;27:3717–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang HY, Zhang YQ. Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog. 2015;31:630–40.

    Article  CAS  PubMed  Google Scholar 

  31. Toh WS, Loh XJ. Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2014;45:690–7.

    Article  CAS  PubMed  Google Scholar 

  32. Saxena AK, Kofler K, Ainödhofer H, Höllwarth ME. Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg. 2009;13:1037–43.

    Article  PubMed  Google Scholar 

  33. Moharamzadeh K, Brook IM, Van Noort R, Scutt AM, Smith KG, Thornhill MH. Development, optimization and characterization of a full-thickness tissue engineered human oral mucosal model for biological assessment of dental biomaterials. J Mater Sci Mater Med. 2008;19:1793–801.

    Article  CAS  PubMed  Google Scholar 

  34. Saxena AK. Tissue engineering and regenerative medicine research perspectives for pediatric surgery. Pediatr Surg Int. 2010;26:557–73.

    Article  PubMed  Google Scholar 

  35. Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer Jr JE. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 2000;6:75–9.

    Article  CAS  PubMed  Google Scholar 

  36. Mironov V, Kasyanov V, McAllister K, Oliver S, Sistino J, Markwald R. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch. J Craniofac Surg. 2003;14:340–7.

    Article  PubMed  Google Scholar 

  37. Scaglione S, Zerega B, Badano R, Benatti U, Fato M, Quarto R. A three-dimensional traction/torsion bioreactor system for tissue engineering. Int J Artif Organs. 2010;33:362–9.

    CAS  PubMed  Google Scholar 

  38. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science. 1999;84:489–93.

    Article  Google Scholar 

  39. Barron V, Lyons E, Stenson-Cox C, et al. Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng. 2003;31:1017–30.

    Article  CAS  PubMed  Google Scholar 

  40. Takimoto Y, Okumura N, Nakamura T, et al. Long-term follow-up of the experimental replacement of the esophagus with a collagen–silicone composite tube. Asaio J. 1993;39:M736–9.

    CAS  PubMed  Google Scholar 

  41. Yamamoto Y, Nakamura T, Shimizu Y, et al. Intrathoracic esophageal replacement with a collagen sponge–silicone double-layer tube: evaluation of omental-pedicle wrapping and prolonged placement of an inner stent. Asaio J. 2000;46:734–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hori Y, Nakamura T, Kimura D, et al. Effect of basic fibroblast growth factor on vascularization in esophagus tissue engineering. Int J Artif Organs. 2003;26:241–4.

    CAS  PubMed  Google Scholar 

  43. Badylak S, Meurling S, Chen M, et al. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg. 2000;35:1097–103.

    Article  CAS  PubMed  Google Scholar 

  44. Badylak SF, Vorp DA, Spievack AR, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res. 2005;128:87–97.

    Article  PubMed  Google Scholar 

  45. Doede T, Bondartschuk M, Joerck C, et al. Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs. 2009;33:328–33.

    Article  PubMed  Google Scholar 

  46. Kofler K, Ainoedhofer H, Höllwarth ME, Saxena AK. Fluorescence-activated cell sorting of PCK-26 antigen-positive cells enables selection of ovine esophageal epithelial cells with improved viability on scaffolds for esophagus tissue engineering. Pediatr Surg Int. 2010;26:97–104.

    Article  PubMed  Google Scholar 

  47. Beckstead BL, Pan S, Bhrany AD, Bratt-Leal AM, Ratner BD, Giachelli CM. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials. 2005;26:6217–28.

    Article  CAS  PubMed  Google Scholar 

  48. Leong MF, Chian KS, Mhaisalkar PS, Ong WF, Ratner BD. Effect of electrospun poly(D, L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J Biomed Mater Res A. 2009;89:1040–8.

    Article  PubMed  Google Scholar 

  49. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS. Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials. 2007;28:861–8.

    Article  CAS  PubMed  Google Scholar 

  50. Sato M, Ando N, Ozawa S, et al. An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen. Asaio J. 1994;40:M389–92.

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi K, Ando N, Ozawa S, et al. A neo-esophagus reconstructed by cultured human esophageal epithelial cells, smooth muscle cells, fibroblasts, and collagen. Asaio J. 2004;50:261–6.

    Article  CAS  PubMed  Google Scholar 

  52. Grikscheit T, Ochoa ER, Srinivasan A, et al. Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg. 2003;126:537–44.

    Article  PubMed  Google Scholar 

  53. Soltysiak P, Saxena AK. Micro-computed tomography for implantation site imaging during in situ oesophagus tissue engineering in a live small animal model. J Tissue Eng Regen Med. 2009;3:573–6.

    Article  PubMed  Google Scholar 

  54. Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, Okano T, Takasaki K. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2006;55:1704–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wei RQ, Tan B, Tan MY, Luo JC, Deng L, Chen XH, Li XQ, Zuo X, Zhi W, Yang P, Xie HQ, Yang ZM. Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp Biol Med (Maywood). 2009;234:453–61.

    Article  CAS  Google Scholar 

  56. Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, Sakakura C, Yamagishi H, Hamuro J, Ikada Y, Otsuji E, Hagiwara A. Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg. 2008;136:850–9.

    Article  PubMed  Google Scholar 

  57. Wei HJ, Liang HC, Lee MH, Huang YC, Chang Y, Sung HW. Construction of varying porous structures in acellular bovine pericardia as a tissue-engineering extracellular matrix. Biomaterials. 2005;26:1905–13.

    Article  CAS  PubMed  Google Scholar 

  58. Saxena AK, Baumgart H, Komann C, Ainoedhofer H, Soltysiak P, Kofler K, Höllwarth ME. Esophagus tissue engineering: in situ generation of rudimentary tubular vascularized esophageal conduit using the ovine model. J Pediatr Surg. 2010;45:859–64.

    Article  PubMed  Google Scholar 

  59. Vineberg A, Pifarre R, Mercier C. An operation designed to promote the growth of new coronary arteris, using a detached omental graft: a preliminary report. Can Med Assoc J. 1962;16:1116–8.

    Google Scholar 

  60. Straw RC, Tomlinson JL, Constantinescu G, Turk MA, Hogan PM. Use of a vascular skeletal muscle graft for canine esophageal reconstruction. Vet Surg. 1987;16:155–63.

    Article  CAS  PubMed  Google Scholar 

  61. Harley BA, Hastings AZ, Yannas IV, Sannino A. Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials. 2006;27:866–74.

    Article  CAS  PubMed  Google Scholar 

  62. Soltysiak P, Höllwarth ME, Saxena AK. Comparison of suturing techniques in the formation of collagen scaffold tubes for composite tubular organ tissue engineering. Biomed Mater Eng. 2010;20:1–11.

    CAS  PubMed  Google Scholar 

  63. Andrade MG, Weissman R, Reis SR. Tissue reaction and surface morphology of absorbable sutures after in vivo Exposure. J Mater Sci Mater Med. 2006;17:949–61.

    Article  CAS  PubMed  Google Scholar 

  64. Saxena AK, Kofler K, Ainoedhofer H, Kuess A, Höllwarth ME. Complexity of approach and demand for esophagus tissue engineering. Tissue Eng A. 2008;14:829.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amulya K. Saxena MD,PhD,DSc(hc),FRCS(Paed.Surg.) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saxena, A.K. (2017). Oesophagus Tissue Engineering: Future Options in Oesophageal Replacement Through Regenerative Medicine. In: Till, H., Thomson, M., Foker, J., Holcomb III, G., Khan, K. (eds) Esophageal and Gastric Disorders in Infancy and Childhood. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11202-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11202-7_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11201-0

  • Online ISBN: 978-3-642-11202-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics