Abstract
The first reports on synthesis of carbon [1] and transition metal chalcogenide [2] nanotubes triggered extensive research on both organic and inorganic nanostructures which proved to have potential of becoming a key nanotechnological material due to the outstanding physical properties. It was found that many compounds which crystallize in a bulk or/and in a layered form can grow into the cylindrical structures, under specific conditions. After the discoveries of nanotubes made of carbon, transition metal chalcogenides and oxides [3], boron nitride [4], silicon [5] and metal (e.g., Au [6]), recent discovery of the functional semiconducting oxide nanostructures [7] paved the way for synthesis of diverse nanosized forms of zinc oxide as well. Diameters of the synthesized nanotubes (or lateral dimensions of the other nanostructures) vary from few Angstroms to few micrometers. In this chapter we derive symmetry of arbitrary nanotubes and discuss their common symmetry-based properties. Then we focus on carbon nanotubes: deriving easily many of their famous properties, we show that symmetry is the most profound way of understanding them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Recall that \(\tilde{x}=x/n\) (division by the line group parameter n), while \(\overline{x},\underline{x}\) denote numerator and denominator of the rational \(x=\overline{x}/\underline{x}\).
- 2.
However, if the hamiltonian is real, then the time reversal must be taken into account to predict band degeneracy and topology, Sect. 8.1.2.
- 3.
As in the considered case there is a single orbit and single orbital per atom, the term \({\mid~\!\!\!{{A,\psi_A}}~\!\!\rangle}{{\boldsymbol r}}a{B,\psi_B}\) determining block \(H^{\downarrow{\lambda}}_{AB}\) in the pulled down hamiltonian matrix (8.22) reduces to the superfluous factor, projector \({\mid~\!\!\!{{000}}~\!\!\rangle}{{\boldsymbol r}}a{000}\).
References
S. Iijima, Nature 354, 56 (1991)
R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature London 360, 444 (1992)
P. Hoyer, Langmuir 12, 1411 (1996)
N.G. Chopra, R.G. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995)
J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, O. Yang, D. Yang, Adv. Matter. 14, 1219 (2002)
J.C. Hutleen, K.B. Jirage, C.R. Martin, J. Am. Chem. Soc. 1420, 6603 (1998)
Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)
J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)
M. Damnjanović, I. Milošević, T. Vuković, R. Sredanović, Phys. Rev. B 60, 2728 (1999)
Y. Li, S.V. Rotkin, U. Ravaioli, Nano Lett. 3, 183 (2003)
M. Damnjanović, I. Milošević, E. Dobardžić, T. Vuković, B. Nikolić, in Applied Physics of Nanotubes: Fundamentals of Theory, Optics and Transport Devices, ed. by S.V. Rotkin, S. Subramoney (Springer-Verlag, Berlin-Heidelberg-New York, 2005), pp. 41–88
V. Kopsky, D. Litvin, Subperiodic Groups, International Tables for Crystallography, vol. E (Kluwer, Dordrecht, 2003)
M. Dresselhaus, G. Dresselhaus, R. Saito, Phys. Rev. B 45, 6234 (1992)
N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)
S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes — Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004)
E.B. Barros, A. Jorio, G.G. Samsonidze, R.B. Capaz, A.G.S. Filho, J.M. Filho, G. Dresselhaus, Physics Reports 431, 261–302 (2006)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)
M. Damnjanović, I. Milošević, T. Vuković, R. Sredanović, J. Phys. A 32, 4097 (1999)
S. Tasaki, K. Maekawa, T. Yamabe, Phys. Rev. B 57, 9301 (1998)
M. Damnjanović, T. Vuković, I. Milošević, J. Phys. A 33, 6561 (2000)
M. Damnjanović, T. Vuković, I. Milošević, Solid State Comm. 116, 265 (2000)
L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Elsevier, Amsterdam, 1980)
L. Jansen, M. Boon, Theory of Finite Groups. Applications in Physics (North-Holland, Amsterdam, 1967)
E. Dobardžić, I. Milošević, B. Nikolić, T. Vuković, M. Damnjanović, Phys. Rev. B 68 (2003)
T. Vuković, M. Damnjanović, Nanotechnology 18, 375708 (2007)
R. Saito, R. Matsuo, G.D. T. Kimura, M.S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001)
M. Damnjanović, I. Milošević, T.V. E. Dobardžić, B. Nikolić, J. Phys. A 36, 10349 (2003)
H. Abud, G. Sartori, Ann. Phys. 150, 307 (1983)
M. Damnjanović, T. Vuković, I. Milošević, Eur. Phys. J. B 25, 131 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Damnjanović, M., Milošsević, I. (2010). Nanotubes. In: Line Groups in Physics. Lecture Notes in Physics, vol 801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11172-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-11172-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11171-6
Online ISBN: 978-3-642-11172-3
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)