Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 801))

Abstract

The first reports on synthesis of carbon [1] and transition metal chalcogenide [2] nanotubes triggered extensive research on both organic and inorganic nanostructures which proved to have potential of becoming a key nanotechnological material due to the outstanding physical properties. It was found that many compounds which crystallize in a bulk or/and in a layered form can grow into the cylindrical structures, under specific conditions. After the discoveries of nanotubes made of carbon, transition metal chalcogenides and oxides [3], boron nitride [4], silicon [5] and metal (e.g., Au [6]), recent discovery of the functional semiconducting oxide nanostructures [7] paved the way for synthesis of diverse nanosized forms of zinc oxide as well. Diameters of the synthesized nanotubes (or lateral dimensions of the other nanostructures) vary from few Angstroms to few micrometers. In this chapter we derive symmetry of arbitrary nanotubes and discuss their common symmetry-based properties. Then we focus on carbon nanotubes: deriving easily many of their famous properties, we show that symmetry is the most profound way of understanding them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 54.99
Price includes VAT (Austria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that \(\tilde{x}=x/n\) (division by the line group parameter n), while \(\overline{x},\underline{x}\) denote numerator and denominator of the rational \(x=\overline{x}/\underline{x}\).

  2. 2.

    However, if the hamiltonian is real, then the time reversal must be taken into account to predict band degeneracy and topology, Sect. 8.1.2.

  3. 3.

    As in the considered case there is a single orbit and single orbital per atom, the term \({\mid~\!\!\!{{A,\psi_A}}~\!\!\rangle}{{\boldsymbol r}}a{B,\psi_B}\) determining block \(H^{\downarrow{\lambda}}_{AB}\) in the pulled down hamiltonian matrix (8.22) reduces to the superfluous factor, projector \({\mid~\!\!\!{{000}}~\!\!\rangle}{{\boldsymbol r}}a{000}\).

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature London 360, 444 (1992)

    Article  ADS  Google Scholar 

  3. P. Hoyer, Langmuir 12, 1411 (1996)

    Article  Google Scholar 

  4. N.G. Chopra, R.G. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995)

    Article  ADS  Google Scholar 

  5. J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, O. Yang, D. Yang, Adv. Matter. 14, 1219 (2002)

    Article  Google Scholar 

  6. J.C. Hutleen, K.B. Jirage, C.R. Martin, J. Am. Chem. Soc. 1420, 6603 (1998)

    Google Scholar 

  7. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    Article  ADS  Google Scholar 

  8. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)

    Article  ADS  Google Scholar 

  9. M. Damnjanović, I. Milošević, T. Vuković, R. Sredanović, Phys. Rev. B 60, 2728 (1999)

    Article  ADS  Google Scholar 

  10. Y. Li, S.V. Rotkin, U. Ravaioli, Nano Lett. 3, 183 (2003)

    Article  ADS  Google Scholar 

  11. M. Damnjanović, I. Milošević, E. Dobardžić, T. Vuković, B. Nikolić, in Applied Physics of Nanotubes: Fundamentals of Theory, Optics and Transport Devices, ed. by S.V. Rotkin, S. Subramoney (Springer-Verlag, Berlin-Heidelberg-New York, 2005), pp. 41–88

    Google Scholar 

  12. V. Kopsky, D. Litvin, Subperiodic Groups, International Tables for Crystallography, vol. E (Kluwer, Dordrecht, 2003)

    Google Scholar 

  13. M. Dresselhaus, G. Dresselhaus, R. Saito, Phys. Rev. B 45, 6234 (1992)

    Article  ADS  Google Scholar 

  14. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  15. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes — Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  16. E.B. Barros, A. Jorio, G.G. Samsonidze, R.B. Capaz, A.G.S. Filho, J.M. Filho, G. Dresselhaus, Physics Reports 431, 261–302 (2006)

    Article  ADS  Google Scholar 

  17. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  18. M. Damnjanović, I. Milošević, T. Vuković, R. Sredanović, J. Phys. A 32, 4097 (1999)

    Article  ADS  MATH  Google Scholar 

  19. S. Tasaki, K. Maekawa, T. Yamabe, Phys. Rev. B 57, 9301 (1998)

    Article  ADS  Google Scholar 

  20. M. Damnjanović, T. Vuković, I. Milošević, J. Phys. A 33, 6561 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Damnjanović, T. Vuković, I. Milošević, Solid State Comm. 116, 265 (2000)

    Article  ADS  Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  23. L. Jansen, M. Boon, Theory of Finite Groups. Applications in Physics (North-Holland, Amsterdam, 1967)

    MATH  Google Scholar 

  24. E. Dobardžić, I. Milošević, B. Nikolić, T. Vuković, M. Damnjanović, Phys. Rev. B 68 (2003)

    Google Scholar 

  25. T. Vuković, M. Damnjanović, Nanotechnology 18, 375708 (2007)

    Article  Google Scholar 

  26. R. Saito, R. Matsuo, G.D. T. Kimura, M.S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001)

    Article  ADS  Google Scholar 

  27. M. Damnjanović, I. Milošević, T.V. E. Dobardžić, B. Nikolić, J. Phys. A 36, 10349 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. H. Abud, G. Sartori, Ann. Phys. 150, 307 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. M. Damnjanović, T. Vuković, I. Milošević, Eur. Phys. J. B 25, 131 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Damnjanović .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Damnjanović, M., Milošsević, I. (2010). Nanotubes. In: Line Groups in Physics. Lecture Notes in Physics, vol 801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11172-3_9

Download citation

Publish with us

Policies and ethics