Comparison of Coarsening Schemes for Multilevel Graph Partitioning

  • Cédric Chevalier
  • Ilya Safro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5851)


Graph partitioning is a well-known optimization problem of great interest in theoretical and applied studies. Since the 1990s, many multilevel schemes have been introduced as a practical tool to solve this problem. A multilevel algorithm may be viewed as a process of graph topology learning at different scales in order to generate a better approximation for any approximation method incorporated at the uncoarsening stage in the framework. In this work we compare two multilevel frameworks based on the geometric and the algebraic multigrid schemes for the partitioning problem.


Coarse Aggregate Coarse Level Graph Topology Graph Partitioning Interpolation Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoretical Computer Science 1, 237–267 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal of Matrix Analysis 11(3), 430–452 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. BELL System Technical Journal, 291–307 (1970)Google Scholar
  4. 4.
    Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the 19th Design Automation Conference, pp. 175–181. IEEE, Los Alamitos (1982)Google Scholar
  5. 5.
    Bui, T.N., Moon, B.R.: Genetic algorithm and graph partitioning. IEEE Trans. Comput. 45(7), 841–855 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brandt, A., Ron, D.: Ch. 1: Multigrid solvers and multilevel optimization strategies. In: Cong, J., Shinnerl, J.R. (eds.) Multilevel Optimization and VLSICAD. Kluwer, Dordrecht (2003)Google Scholar
  7. 7.
    Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Annals Oper. Res. 131, 325–372 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chan, T.F., Cong, J., Romesis, M., Shinnerl, J.R., Sze, K., Xie, M.: mpl6: a robust multilevel mixed-size placement engine. In: Groeneveld, P., Scheffer, L. (eds.) ISPD, pp. 227–229. ACM, New York (2005)Google Scholar
  9. 9.
    Chang, C., Cong, J., Pan, D., Yuan, X.: Multilevel global placement with congestion control. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 22, 395–409 (2003)CrossRefGoogle Scholar
  10. 10.
    Cong, J., Shinnerl, J.R. (eds.): Multilevel Optimization and VLSICAD. Kluwer, Dordrecht (2003)Google Scholar
  11. 11.
    Safro, I., Ron, D., Brandt, A.: Multilevel algorithms for linear ordering problems. Journal of Experimental Algorithmics 13, 1.4–1.20 (2008)Google Scholar
  12. 12.
    Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: IPDPS (2006)Google Scholar
  13. 13.
    Alpert, C.J., Huang, J.H., Kahng, A.B.: Multilevel circuit partitioning. In: Design Automation Conference, pp. 530–533 (1997)Google Scholar
  14. 14.
    Banos, R., Gil, C., Ortega, J., Montoya, F.: Multilevel heuristic algorithm for graph partitioning. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 143–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Ron, D., Wishko-Stern, S., Brandt, A.: An algebraic multigrid based algorithm for bisectioning general graphs. Technical Report MCS05-01, Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science (2005)Google Scholar
  16. 16.
    Barnard, S.T., Simon, H.D.: A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency: Practice and Experience 6, 101–107 (1994)CrossRefGoogle Scholar
  17. 17.
    Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. In: Supercomputing (1995)Google Scholar
  18. 18.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. Technical Report 95-035, University of Minnesota (1995)Google Scholar
  19. 19.
    Catalyurek, U., Aykanat, C.: Decomposing irregularly sparse matrices for parallel matrix-vector multiplications. In: Saad, Y., Yang, T., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1996. LNCS, vol. 1117, pp. 75–86. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Devine, K., Boman, E., Heaphy, R., Hendrickson, B., Vaughan, C.: Zoltan data management services for parallel dynamic applications. Computing in Science and Engineering 4(2), 90–97 (2002)CrossRefGoogle Scholar
  21. 21.
    Walshaw, C.: A multilevel approach to the travelling salesman problem. Tech. Rep. 00/IM/63, Comp. Math. Sci., Univ. Greenwich, London SE10 9LS, UK (2000)Google Scholar
  22. 22.
    Hu, Y.F., Scott, J.A.: A multilevel algorithm for wavefront reduction. SIAM J. Scientific Computing 23, 2000–2031 (2001)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Meyerhenke, H., Monien, B., Sauerwald, T.: A new diffusion-based multilevel algorithm for computing graph partitions of very high quality. In: Proc. 22nd International Parallel and Distributed Processing Symposium (IPDPS 2008). IEEE Computer Society, Los Alamitos (2008); Best Algorithms Paper AwardGoogle Scholar
  24. 24.
    scotch: Static mapping, graph partitioning, and sparse matrix block ordering package,
  25. 25.
    Simon, H.D., Teng, S.H.: How good is recursive bisection. SIAM J. Sci. Comput. 18, 1436–1445 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Brandt, A.: General highly accurate algebraic coarsening. Electronic Trans. Num. Anal. 10(2000), 1–20 (2000)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Safro, I., Ron, D., Brandt, A.: Graph minimum linear arrangement by multilevel weighted edge contractions. Journal of Algorithms 60(1), 24–41 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Hager, W.W., Krylyuk, Y.: Graph partitioning and continuous quadratic programming. SIAM J. Discret. Math. 12(4), 500–523 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Henson, V.E., Yang, U.M.: Boomeramg: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Gee, M., Siefert, C., Hu, J., Tuminaro, R., Sala, M.: ML 5.0 smoothed aggregation user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories (2006)Google Scholar
  31. 31.
    Chevalier, C., Pellegrini, F.: Improvement of the efficiency of genetic algorithms for scalable parallel graph partitioning in a multi-level framework. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 243–252. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    Chevalier, C., Pellegrini, F.: Pt-scotch: A tool for efficient parallel graph ordering. Parallel Comput. 34(6-8), 318–331 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cédric Chevalier
    • 1
  • Ilya Safro
    • 2
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations