Skip to main content

Time to extinction in a two-host interaction model for the macroparasite Echinococcus granulosus

  • Conference paper
  • First Online:
Workshop on Branching Processes and Their Applications

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 197))

  • 1187 Accesses

Abstract

An approximation is derived for the time to extinction in a sub-critical epidemic two-host interaction process for the macroparasite Echinococcus granulosus. The argument is based on coupling the epidemic model with a two-type branching process, and then to approximate the time to extinction for the branching process. It is shown that the approximate time is proportional to the logarithm of a weighted sum of the initially infectives in the host populations plus a Gumbel random variable. The accuracy of the approximation is illustrated.

Mathematics Subject Classification (2000): 60J80; 92D30

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, F.: The threshold behaviour of epidemic models. J. Appl. Probab. 20,227–241 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ball, F., Donnelly, P.: Strong approximations for epidemic models. Stoch. Proc. Appl. 55, 1–25 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbour, A.D.: Coupling a branching process to an infinite dimensional epidemic process. (2007), url = arXiv:math.PR/0710.3697v1

    Google Scholar 

  4. Barbour, A.D., Utev, S.: Approximating the Reed-Frost epidemic process. Stoch. Proc. Appl. 113, 173–197 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Diekmann, O. and Heesterbeek, J.A., Metz, J.A.: On the definition and the computation of the basic reproduction ratio R[Subscript]0[/Subscript] in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eckert, J., Deplazes, P.: Biological, epidemiological and clinical aspects of Echinococcosis, a zoonosis of increasing concern. Clin. Microbiol. Rev. 17, 107–135 (2004)

    Article  Google Scholar 

  7. Economides, P., Cristofi, G.: Cestode Zoonoses: Echinococcosis and Cysticercosis. An Emergent and Global Problem. NATO Science Series, 3rd edition. IOS Press, Amsterdam (2002)

    Google Scholar 

  8. Gemmell, M.A., Lawson, J.R., Roberts, M.G.: Population dynamics in echinococcosis and cysticercosis: biological parameters of Echinococcus granulosus in dogs and sheep. Parasitology 92, 599–620 (1986)

    Article  Google Scholar 

  9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Chem. Phys. 81, 2340–2361 (1977)

    Article  Google Scholar 

  10. Heesterbeek, J.A.P., Roberts, M.G.: The type-reproduction number T in models for infectious disease control. Math. Biosci. 206, 3–10 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heinzmann, D.: Extinction time in multitype Markov branching processes. J. Appl. Probab. 46, 296–307 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Thompson, R.C.A., Lymbery, A.J.: The Biology of Echinococcus and Hydatid Disease. George Allen and Unwin, London (1986)

    Google Scholar 

  13. Torgerson, P.R., Burtisurnov, K.K., Shaikenov, B.S., Rysmukhambetova, A.T., Abdybekova, A.M., Ussenbayev, A.E.: Modelling the transmission dynamics of Echinococcus granulosus in dogs in rural Kazakhstan. Parasitology 126, 417–424 (2003)

    Article  Google Scholar 

  14. Torgerson, P.R., Oguljahan, B., Muminov, M.E., Karaeva, R.R., Kuttubaev, O.T., Aminjanov, M., Shaikenov, B.: Present situation of cystic echinococcosis in Central Asia. Parasitol. Int. 55, 207–212 (2006)

    Article  Google Scholar 

  15. Torgerson, P.R., Shaikenov, B.S., Rysmukhambetova, A.T., Ussenbayev, A.E., Abdybekova, A.M., Burtisurnov, K.K.: Modelling the transmission dynamics of Echinococcus granulosus in sheep and cattle in Kazakhstan. Vet. Parasitol. 114, 143–153 (2003)

    Google Scholar 

  16. Torgerson, P.R., Williams, D.H., Abo-Shehada, M.N.: Modelling the prevalence of Echinococcus and Taenia species in small ruminants of different ages in northern Jordan. Vet. Parasitol. 79, 35–51 (1998)

    Article  Google Scholar 

  17. Whittle, P.: The outcome of a stochastic epidemic – A note on Bailey's paper. Biometrika 42, 116–122 (1955)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Andrew Barbour for fruitful discussions. The author also gratefully acknowledge the referee for comments and suggestions that greatly improved the presentation. This work was supported by the Schweizerischer Nationalfonds (SNF), project no. 107726.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Heinzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinzmann, D. (2010). Time to extinction in a two-host interaction model for the macroparasite Echinococcus granulosus . In: González Velasco, M., Puerto, I., Martínez, R., Molina, M., Mota, M., Ramos, A. (eds) Workshop on Branching Processes and Their Applications. Lecture Notes in Statistics(), vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11156-3_18

Download citation

Publish with us

Policies and ethics