Skip to main content

Spinal Cord Tolerance to Radiosurgery

  • Chapter
  • First Online:
Shaped Beam Radiosurgery
  • 846 Accesses

Abstract

Stereotactic body radiotherapy (SBRT) is an emerging technology used for the treatment of spinal tumors. Its implementation allows effective dose escalation over conventional radiotherapy, which may improve tumor control. Additionally, it provides a treatment option for patients who are not candidates for conventional radiotherapy because of previous radiotherapy to the spinal cord. Finally, it has the potential to improve the quality of life for patients who may be spared a prolonged treatment course, and acute radiation toxicity. With potential advantages, come new challenges. Most critical among these challenges is to minimize the risk of spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agazaryan N, Tenn S, Selch M et al (2008a) Image-guided radiosurgery for spinal tumors: methods, accuracy, and patient intrafraction motion. Phys Med Biol 53:1715–1727

    Article  PubMed  Google Scholar 

  • Agazaryan N et al (2008b) Image-guided radiosurgery for spinal tumors: methods, accuracy and patient intrafraction motion. Phys Med Biol 53:1715–27

    Article  PubMed  Google Scholar 

  • Ahlbom H (1941) The results of radiotherapy of hypopharyngeal cancer at Radiumhemmut, Stockholm, 1930–1939. Acta Radiol 22:155–171

    Article  Google Scholar 

  • Ang K, Jiang G, Price R et al (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Antypas C, Pantellis E (2008) Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol 53:4697–4718

    Article  PubMed  Google Scholar 

  • Bijl H et al (2002) Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys 52:205–211

    Article  PubMed  Google Scholar 

  • Bijl H et al (2005) Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys 61:543–551

    Article  PubMed  Google Scholar 

  • Bijl H, Van Luijk P, Van Der Kogel A et al (2006) Influence of adjacent low-dose fields on tolerance to high doses of protons in rat cervical spinal cord. Int J Radiat Oncol Biol Phys 64:1204–1210

    Article  PubMed  Google Scholar 

  • Chang E et al (2007) Phase I/II study of stereotactic body radiotherapy for spinal metastases and its pattern of failure. J Neurosurg Spine 7:151–160

    Article  PubMed  Google Scholar 

  • Emami B, Lyman J, Wesson M et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–22

    Article  PubMed  CAS  Google Scholar 

  • Flickinger J, Kondziolka D, Lunsford L et al (2002) An analysis of the dose response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 63:347–54

    Article  PubMed  Google Scholar 

  • Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ et al (1997) Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res 50:337–344

    Article  PubMed  CAS  Google Scholar 

  • Gagnon G, Nasr N, Henderson F et al (2009) Treatment of spinal tumors using CyberKnife fractionated stereotactic radiosurgery: pain and quality of life assessment after treatment in 200 patients. Neurosurgery 64:297–307

    Article  PubMed  Google Scholar 

  • Gerszten P (2008) Radiosurgery for benign intradural spinal tumors. Neurosurgery 62:887–896

    Article  PubMed  Google Scholar 

  • Gibbs I et al (2007) Image-guided robotic radiosurgery for spinal metastases. Radiother Oncol 85:185–190

    Article  Google Scholar 

  • Gibbs R, Patil C, Burton S et al (2009) Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurgery 64(Supplement):A67–A72

    Article  PubMed  Google Scholar 

  • Guckenberger M et al (2007) Precision required for dose-escalated treatment of spinal metastases and implications for image-guided radiation therapy. Radiother Oncol 84:56–63

    Article  PubMed  Google Scholar 

  • Gwak HS, Yoo HJ, Youn SM et al (2005) Hypofractionated stereotactic radiation therapy for skull base and upper cervical chordoma and chondrosarcoma: preliminary results. Stereot­act Funct Neurosurg 83:233–243

    Article  PubMed  Google Scholar 

  • Hartsell W, Scott C, DeSilvio M et al (2005) Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst 97:798–804

    Article  PubMed  Google Scholar 

  • Hoogeman M et al (2008) Time dependence of intrafraction patient motion assessed by repeat stereoscopic imaging. Int J Radiat Oncol Biol Phys 70:609–618

    Article  PubMed  Google Scholar 

  • Jin J, Ryu S, Movasas B et al (2008) Evaluation of residual patient position variation for spinal radiosurgery using the Novalis image guided system. Med Phys 35:1087–1093

    Article  PubMed  Google Scholar 

  • Lambert P (1978) Radiation myelopathy of the thoracic spinal cord in long term survivors treated with radical radiotherapy using conventional fractionation. Cancer 41:1751–1760

    Article  PubMed  CAS  Google Scholar 

  • Linstadt D, Wara W, Sheline G et al (1989) Postoperative radiotherapy of primary spinal cord tumors. Int J Radiat Oncol Biol Phys 16:1397–1403

    Article  PubMed  CAS  Google Scholar 

  • Macbeth F, Wheldon T, Reed N et al (1996) Radiation myelopathy: estimates of risk in 1048 patients in three randomized trials of palliative radiotherapy for non-small cell lung cancer. Clin Oncol 8:176–81

    Article  CAS  Google Scholar 

  • Maranzano E, Latini P, Corgna E et al (1997) Short-course radiotherapy (8 Gy x 2) in metastatic spinal cord compression: an effective and feasible treatment. Int J Radiat Oncol Biol Phys 38:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Maranzano E, Bellavita R, Latini P et al (2001) Radiation-induced myelopathy in long-term surviving metastatic spinal cord compression patients after hypofractionated radiotherapy: a clinical and magnetic resonance imaging analysis. Radiother Oncol 60:281–288

    Article  PubMed  CAS  Google Scholar 

  • Marcus R, Million R (1990) The incidence of myelitis after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys 19:3–8

    Article  PubMed  Google Scholar 

  • Medin P et al (2008) Spinal cord tolerance to radiosurgical dose distributions: a swine model. Int J Radiat Oncol Biol Phys 72:S83

    Article  Google Scholar 

  • Murphy M et al (2003) Patterns of patient movement during frameless image-guided radiotherapy. Int J Radiat Oncol Biol Phys 55:1400–1408

    Article  PubMed  Google Scholar 

  • Nieder C, Grosu A, Molls M et al (2005) Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys 61:851–855

    Article  PubMed  Google Scholar 

  • Park C, Papiez L, Timmerman R et al (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–52

    Article  PubMed  Google Scholar 

  • Ryu S et al (2003) Image-guided and intensity-modulated radiosurgery for patients with spinal metastasis. Cancer 97:2013–8

    Article  PubMed  Google Scholar 

  • Ryu S et al (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiotherapy. Cancer 109:628–36

    Article  PubMed  Google Scholar 

  • Sahgal A (2008) Stereotactic body radiosurgery for spinal metastases: a critical review. Int J Radiat Oncol Biol Phys 71(3):652–65

    Article  PubMed  Google Scholar 

  • Sahgal A et al (2010) Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 77:548–553

    Article  PubMed  Google Scholar 

  • Schultheiss TE (2008) The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys 71:1455–1459

    Article  PubMed  Google Scholar 

  • Schultheiss T, Kun L, Stephens L et al (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    Article  PubMed  CAS  Google Scholar 

  • Thames H, Withers H, Fletcher G et al (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 8:219–226

    Article  PubMed  Google Scholar 

  • Van der Linden Y, Dijkstra S, Leer J et al (2005) Prediction of survival in patients with metastases in the spinal column. Cancer 103:320–328

    Article  PubMed  Google Scholar 

  • Van der Linden Y, Steenland E, Leer J et al (2006) Patients with a favourable prognosis are equally palliated with single and multiple fraction radiotherapy: results on survival in the Dutch Bone Metastasis Study. Radiother Oncol 78:245–253

    Article  PubMed  Google Scholar 

  • Wang H et al (2008) Dosimetric effect of translational and rotational errors for patients undergoing image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 71:1261–1271

    Article  PubMed  Google Scholar 

  • Wara W, Phillips T, Schwade J et al (1975) Radiation tolerance of the spinal cord. Cancer 35:1558–1562

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Bilsky M, Fuks Z et al (2008) High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys 71:484–490

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Knight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knight, A. (2011). Spinal Cord Tolerance to Radiosurgery. In: De Salles, A., et al. Shaped Beam Radiosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11151-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11151-8_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11150-1

  • Online ISBN: 978-3-642-11151-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics