Biometric-Based Non-transferable Anonymous Credentials

  • Marina Blanton
  • William M. P. Hudelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5927)


This work explores the problem of using biometric data to achieve non-transferability of anonymous credentials; that is, sharing of anonymous credentials, which allow one to anonymously authenticate, can be severely limited if their use requires possession of the credential owner’s biometric. We target to provide strong security guarantees using minimal trust assumptions, namely that a fresh reading of a biometric is enforced on each use of the credentials. Furthermore, no biometric or other information is compromised if an adversary obtains full access to all credential-related data. Our solution relies on constructions for fuzzy extractors that allow one to extract and reproduce a random string from noisy biometric images. We first examine security requirements of biometric key generators, and then show how they can be integrated with anonymous credentials to achieve a high degree of non-transferability and security.


Authentication Scheme Authentication Protocol Biometric Data Discrete Logarithm Problem Random String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arakala, A., Jeffers, J., Horadam, K.: Fuzzy extractors for minutiae-based fingerprint authentication. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 760–769. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bakhtiari, A., Shirazi, A., Zamanlooy, B.: An efficient biocryptosystem based on the iris biometrics. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 334–345. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Ballard, L., Kamara, S., Reiter, M.: The practical subtleties of biometric key generation. In: USENIX Security Symposium, pp. 61–74 (2008)Google Scholar
  4. 4.
    Blanton, M., Aliasgari, M.: Secure computation of biometric matching. Technical Report 2009–03, Department of Computer Science & Engineering, University of Notre Dame (2009)Google Scholar
  5. 5.
    Bleumer, G.: Biometric yet privacy protecting person authentication. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 99–110. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM Conference on Computer and Communications Security (CCS 2004), pp. 82–91 (2004)Google Scholar
  8. 8.
    Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae and applications. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 272–288. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Bringer, J., Chabanne, H., Cohen, G., Kindarji, B., Zemor, G.: Optimal iris fuzzy sketches. In: IEEE BTAS, pp. 1–6 (2007)Google Scholar
  11. 11.
    Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report No. 260, ETH Zurich (1997)Google Scholar
  16. 16.
    Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)Google Scholar
  17. 17.
    Clancy, T., Kiyavash, N., Lin, D.: Secure smartcard-based fingerprint authentication. In: ACM SIGMM Workshop on Biometrics Methods and Applications, pp. 45–52 (2003)Google Scholar
  18. 18.
    Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  19. 19.
    Davida, G., Frankel, Y., Matt, B.: On enabling secure applications through off-line biometric identification. In: IEEE Symposium on Security and Privacy, pp. 148–157 (1998)Google Scholar
  20. 20.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal of Computing 38(1), 97–139 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively. IEEE Transactions on Computers 55(9), 1081–1088 (2006)CrossRefGoogle Scholar
  24. 24.
    Impagliazzo, R., Miner More, S.: Anonymous credentials with biometrically-enforced non-transferability. In: ACM Workshop in Privacy in the Electronic Society (WPES 2003), pp. 60–71 (2003)Google Scholar
  25. 25.
    Juels, A., Sudan, M.: A fuzzy vault scheme. In: International Symposium on Information Theory (2002)Google Scholar
  26. 26.
    Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on Computer and Communications Security, pp. 28–36 (1999)Google Scholar
  27. 27.
    Lee, S., Moon, D., Jung, S., Chung, Y.: Protecting secret keys with fuzzy fingerprint vault based on a 3d geometric hash table. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 432–439. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Lee, Y.J., Bae, K., Lee, S.J., Park, K.R., Kim, J.: Biometric key binding: Fuzzy vault based on iris images. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 800–808. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Nagar, A., Chaudhury, S.: Biometrics based asymmetric cryptosystem design using modified fuzzy vault scheme. In: International Conference on Pattern Recognition (ICPR 2006), pp. 537–540 (2006)Google Scholar
  30. 30.
    Nandakumar, K., Jain, A., Pankanti, S.: Fingerprint-based fuzzy vault: Implementation and performance. IEEE Transactions on Information Forensics and Security 2(4), 744–757 (2007)CrossRefGoogle Scholar
  31. 31.
    Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions. Journal of Computer and System Sciences 58, 148–173 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  33. 33.
    Simoens, K., Tuyls, P., Preneel, B.: Privacy weaknesses of biometric sketches. In: IEEE Symposium on Security and Privacy (2009)Google Scholar
  34. 34.
    Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy vault for fingerprints. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer, Heidelberg (2005)Google Scholar
  35. 35.
    Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.: Biometric cryptosystems: Issues and challenges. Proceedings of the IEEE 92(6), 948–960 (2004)CrossRefGoogle Scholar
  36. 36.
    Yang, S.: Secure fuzzy vault based fingerprint verification system. In: Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp. 577–581 (2004)Google Scholar
  37. 37.
    Yang, S., Verbauwhede, I.: Automatic secure fingerprint verification system based on fuzzy vault scheme. In: ICASSP, pp. 609–612 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marina Blanton
    • 1
  • William M. P. Hudelson
    • 2
  1. 1.Department of Computer Science and EngineeringUniversity of Notre Dame 
  2. 2.Mathematics DepartmentPennsylvania State University 

Personalised recommendations