Skip to main content

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 54))

Abstract

One of the most famous and important functional inequalities is the following one:

$${\text{f}}\left( {\frac{{{\text{x}}\,{\text{ + }}\,{\text{y}}}}{2}} \right) \leqslant \frac{{{\text{f}}\left( {\text{x}} \right)\,+ \,{\text{f}}\left( {\text{y}} \right)}}{2}$$
(1)

This inequality was first considered by Jensen [l5] and he gave to functions fulfilling (1) the name convex. Jensen himself expressed the opinion: “It seems to me that the notion of a convex function is almost as fundamental as those of a positive function or increasing function. If I am not mistaken, this notion should find place in elementary text-books on the theory of real functions.” And he was not mistaken. Nowadays the notion of convex functions belongs to the most important ones in mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aczél, Lectures on functional equations and their applications, New York and London 1966.

    MATH  Google Scholar 

  2. E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439–460.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Bereanu, Partial monotonicity and (J) - convexity, Rev. Roum. Math. Pures et Appl. 14 (1969), 1085–1087.

    MathSciNet  MATH  Google Scholar 

  4. F. Bernstein und G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), 514–526.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Blumberg, On convex functions, Trans. Amer. Math. Soc. 29 (1919), 40–44.

    Article  MathSciNet  Google Scholar 

  6. A. Császár, Konvex halmazokról és függvényekröl, Mat. Lapok 9 (1958), 273–282.

    MathSciNet  Google Scholar 

  7. E. Deák, Über konvexe und interne Funktionen, sowie eine gemeinsame Verallgemeinerung von beiden, Ann. Univ. Sci. Budapest., Sect. Math. 5 (1962), 109–154.

    MATH  Google Scholar 

  8. P. Erdös, On some properties of Hamel bases, Colloquium. Math. 10 (1963), 267–269.

    MATH  Google Scholar 

  9. R. Ger, Some remarks on convex functions, Fund. Math. 66 (1970), 255–262.

    MathSciNet  MATH  Google Scholar 

  10. R. Ger, Some new conditions of continuity of convex functions, Mathematica, Cluj, (to appear).

    Google Scholar 

  11. R. Ger and M. Kuczma, On the boundedness and continuity of convex functions and additive functions, Aequationes Math. 4 (1970), 157–162.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.W, Green and W. Gustin, Quasiconvex sets, Canadian J. Math. 2 (1950), 489–507.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Hamel, Eine Basis aller Zahler und die unstetigen Ltfsungen der Funktionalgleichung f (x+y) = f(x) + f(y), Math. Ann. 60 (1905), 459–462.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Hukuhara, Sur la fonction convexe, Proc. Japan Acad. Sci. 30 (1954), 683–685.

    Google Scholar 

  15. J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math. 30 (1906), 175–193.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. H. B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86 (1957), 28–56.

    Article  MathSciNet  MATH  Google Scholar 

  17. Z. Kominek, On the sum and difference of two sets in topological vector spaces, Fund. Math, (to appear).

    Google Scholar 

  18. M. E. Kuczma, On discontinuous additive functions, Fund. Math. 66 (1970), 383–392.

    MathSciNet  MATH  Google Scholar 

  19. M. E. Kuczma and M. Kuczma, An elementary proof and an extension of a theorem of Steinhaus, Glasnik Mat. (Ser.III), (to appear).

    Google Scholar 

  20. M. Kuczma, Note on convex functions, Ann. Univ. Sci. Budapest., Sect. Math. 2 (1959), 25–26.

    MathSciNet  MATH  Google Scholar 

  21. M. Kuczma, P 35, Aequationes Math. 2 (1969), 378

    Google Scholar 

  22. M. Kuczma, Some remarks on convexity and monotoni-city, Rev. Roum. Math. Pures et Appl. (to appear).

    Google Scholar 

  23. [23] S. Kurepa, Convex functions, Glasnik Mat.-Fiz, Astronom. (Ser. II), 11 (1956), 89–93.

    MathSciNet  Google Scholar 

  24. S. Kurepa, Note on the difference set of two measurable sets in En, Glasnik Mat, -Fiz. Astronom. (Ser. II), 15 (1960), 99–105.

    MathSciNet  MATH  Google Scholar 

  25. S. Marcus, Generalisation, aux fonctions de plusieurs variables, des théorèmes de Alexander Ostrowski et de Masuo Hukuhara concernant les fonctions convexes (J), J. Math. Soc. Japan 11 (1959), 171–176.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. R. Mehdi, On convex functions, J. London Math. Soc. 39 (1964), 321–326.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. S. Mitrinovié, Analytic Inequalities, (to appear).

    Google Scholar 

  28. E. Mohr, Beitrag zur Theorie der konvexen Funktionen, Math. Nachr. 8 (1952), 133–148.

    Article  MathSciNet  MATH  Google Scholar 

  29. W. Orlicz and Z. Ciesielski, Some remarks on the convergence of functionals on bases, Studia Math. 16 (1958), 335–352.

    MathSciNet  MATH  Google Scholar 

  30. A. Ostrowski, Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen, Jahresber. Deutsch. Math. Verein. 38 (1929), 54–62.

    MATH  Google Scholar 

  31. S. Piccard, Sur des ensembles parfaits, Paris, 1942.

    MATH  Google Scholar 

  32. W. Sierpinski, Sur les fonctions convexes mesurables, Fund. Math. 1 (1920), 125–129.

    Google Scholar 

  33. H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 93–104.

    Google Scholar 

  34. P. Szasz, Konvex es monoton fuggvenyekrol, Mat. Fiz. Lapok 36 (1929), 55–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Forte (Coordinatore)

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuczma, M. (2010). Convex Functions. In: Forte, B. (eds) Functional Equations and Inequalities. C.I.M.E. Summer Schools, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11004-7_8

Download citation

Publish with us

Policies and ethics