Skip to main content

The Use of the Surface Impedance Concept in the Theory of Electromagnetic Surface Waves

  • Chapter
Onde superficiali

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 25))

Abstract

Certain general problems in the theory of electromagnetic surface waves related to the impedance description of the guiding properties of interfaces are reviewed here. It is assumed that, in general, the surface impedance may have spatial dispersion, i.e., that it may depend on the structure of the field which it determines. The value of such a description is demonstrated both for the study of free waves and for the solution of the problem of surface field excitation by means of various sources (including diffraction). Only those studies are discussed in this review that deal directly with the use of the surface impedance concept. The appended bibliography is more complete : it contains references to nearly all the main articles on electromagnetic surface waves which have been published during the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ya. L. Alpert, V.L. Ginzburg, E.L. Feinberg, The propagation of radio waves, Gov. ed. of theor. techn. literature, Moscow, 1953.

    Google Scholar 

  2. L. M. Brekhovskikh, Waves in layered media, by Academic Press, New York, 1960

    Google Scholar 

  3. L. Brillouin, M. Parodi, Wave-Propagation in periodic structures, electric Filters and crystal lattices, Dover Publishing Co. New York, 1953.

    MATH  Google Scholar 

  4. L. A. Weinstein, Diffraction of electromagnetic and sonic waves on the open end of a waveguide, published by Soviet Radio, Moscow, 1953.

    Google Scholar 

  5. L. A. Weinstein, Electromagnetic waves, published by Soviet Radio, Moscow, 1957.

    Google Scholar 

  6. V. L. Ginzburg, Propagation of electromagnetic waves in plasma, Phys. Math. State Publications, Moscow, 1960.

    Google Scholar 

  7. The Channeling of electromagnetic energy by means of surface waves (a survey), Problems of Radar Engineering, No. 1 (7), 14 (1952).

    Google Scholar 

  8. M. A. Miller, Application of uniform boundary conditions in the solution of the problem of the propagation of surface electromagnetic waves, and in the investigation of the oscillations of thin antennas, Thesis, Gorky University, 1953.

    Google Scholar 

  9. M. A. Miller, V.I. Talanov, Surface electromagnetic waves (a survey of Soviet work), a report for the XIIIth General Assembly of URSI, London, 1960

    Google Scholar 

  10. F. M. Morse, G. Peshbach, Methods of theoretical physics, I, Mc Graw-Hill Book Company, New York, 1953.

    Google Scholar 

  11. M. S. Neumann, The problem of surface electromagnetic waves, Bulletin of Higher Education Institutions, Radio Engineering, 1–2, No. 1, 7 (1958).

    Google Scholar 

  12. V. I. Talanov, Problems of the diffraction and excitation of electromagnetic waves in slow-wave systems. Thesis, Gorky University, 1959.

    Google Scholar 

  13. Transmission line theory for super-high frequencies, 1, published by Soviet Radio, Moscow, 1951.

    Google Scholar 

  14. V. A. Fock, Diffraction of radio waves around the earth's surface, published by the USSR Academy of Sciences, M.-L., 1946.

    Google Scholar 

  15. H. M. Barlow, A.I. Cullen, Surface waves, Proceeding of the Institute of Electrical Engineers, 100, III, 329 (1953).

    Google Scholar 

  16. M. F. Bracey, Surface-wave research in Sheffield, Transactions of the Institute of Radio Engineers, AP-7, XII, Special Suppl., 219 (1959).

    Google Scholar 

  17. H. V. Cottony, R.S. Elliott, E.G. Jordon, V.H. Rumsey, K.M. Siegel, J.E. Wait, O.G. Woodyard, U.SJU National Committee Report to URSI Sub-commission 6. 3. Antennas and waveguides, and annotated bibliography.

    Google Scholar 

  18. A. P. Harvey, Periodic and guiding structures at microwave frequencies (a survey), IRE, MTT-8, 30 (1960).

    Google Scholar 

  19. P. J. Zucker, The guiding and radiation of surface waves, 1954 Proc. Symp. on Modern Advances in Microwave Tech., page 403. Polytechnic Inst. of Brooklyn, 1955.

    Google Scholar 

  20. F. J. Zucker, Surface and leaky-wave antennas, Chapter 16 in the Handbook of Antenna Engineering, H. Jasik, Mc Graw-Hill Book Co., 1960.

    Google Scholar 

  21. P. J. Zucker, Progress in surface and leaky-wave antennas during the last three years, J. Res. NBS, 64D, 6 (1960).

    Google Scholar 

  22. N. A. Armand, The propagation of electromagnetic surface waves along a multiwire system, Journal of Engineering Physics, 29, 107 (1959).

    Google Scholar 

  23. P. G. Bass, The boundary conditions for an average electromagnetic field on a surface with random irregularities and with fluctuations of impedance, Bulletin of Higher Education Institutions, Radio Fnysics, 3, 72 (1960).

    Google Scholar 

  24. A. M. Belyantsev, Toward a theory of multiwire systems with surface waves, Bulletin of Higher Education Institutions, Radio Physics, 1, No. 5–6, 112 (1958).

    Google Scholar 

  25. V. I. Bespalov, M.A. Miller, Electromagnetic waves in rectangular grooves with a dielectric coating of the bottom, Scientific notes of Gorky Geophysics Institute, Physics Series, 30, 61 (1959).

    Google Scholar 

  26. L. S. Benenson, Anisotropic properties of corrupted retarding systems, Radio Engineering and Electronics, 4, 517 (1959).

    Google Scholar 

  27. M. S. Bobrovnikov, E.A. Babin, The maximum rated power tranamittible along a single cylindrical wire, Bulletin of Higher Education Institutions, Physics, No. 1, 175 (1957).

    Google Scholar 

  28. D. M. Bravo-Zhivotovski, Surface waves with circular polarization in corrugated systems, Bulletin of Higher Education Institutions, Radio Physics, 2, 829 (1959).

    Google Scholar 

  29. L. M. Brekhovskikh, Surface waves in acoustics, Journal of Acoustics, 5, 4 (1959).

    Google Scholar 

  30. B. M. Bulgakov, V.P. Shestopalov, L.A. Shishkin and I.P. Yakimenko, Symmetrical surface waves in a spiral waveguide, located in a ferrite medium, Radio Engineering and Electronics, 5, 1818 (1960).

    Google Scholar 

  31. L. A. Weinstein, Surface electromagnetic waves over a comb structure, Journal of Engineering Physics, 26, 385 (1956).

    Google Scholar 

  32. T. A. Vereshchakova, V.V. Tyazhelov, Experimental investigation of space-beats in a two-wire line with decinetrio waves, Bulletin of Higher Education Institutions, Radio Engineering, 2, 217 (1959).

    Google Scholar 

  33. B. N. GershiLan, Ordinary waves in a uniform plasma with a maffletic field, Collection in memory of A.A.Andronova, Moscow, 1955, page 599.

    Google Scholar 

  34. M. A. Ginzburg, Surface waves on the boundary of a gyro-tropic medium, Journal of Experimental and Theoretical Physics, 34, 1635 (1958); Transactions-of the Graduate School, Radio Engineering and Electronics, No. 3, 38 (1958).

    Google Scholar 

  35. A. A. Denisov, Determination of the propagation constant of a surface TM (transverse ragnetic) wave, propagating along a cylindrical conductor with a ring-type corrugated structure, Transactions of the Leningrad Polytechnic Institute, Radio Physics, No, 181, 68 (1955).

    Google Scholar 

  36. K. M. Ivanov-Schitz, F.V. Rozhin, Toward an investigation of surface waves in the air, Journal of Acoustics, 5, 495 (1959).

    Google Scholar 

  37. B. Z. Katzenelenbaum, Asymmetrical oscillations of an infinite dielectric cylinder, Journal of Engineering Physics, 19, 1182 (1949).

    Google Scholar 

  38. L. D. Landau, E.M. Lifschitz, Electrodynamics of solid media, Gov. ed. of theor. techn. literature, Moscow, 1957, page 364.

    Google Scholar 

  39. N. N. Malov, A transverse electric wave in a metallic trough, Radio Engineering and Electronics, 2, 1289(1957).

    Google Scholar 

  40. L. I. Mandelstam, The propagation of waves along a surface and the guiding action of conductors, A complete collection of transaction, 3, published by the USSR Academy of Sciences, Moscow, 1950, page 365.

    Google Scholar 

  41. A. L. Mikaelyan, The application of ferrites in high-frequency systems engineering, Thesis, Radio Electronics Publications of the USSR Academy of Sciences, 1955.

    Google Scholar 

  42. A. L. Mikaelyan, A.K. Stolyarov, Surface waves in ferrite waveguides, Radio Engineering and Electronics, 4, 1079 (1959).

    Google Scholar 

  43. M. A. Miller, The propagation of electromagnetic waves over a flat surface with anisotropic homogeneous boundary conditions, Transactions of the USSR Academy of Sciences, 87, 571 (1952).

    Google Scholar 

  44. M. A. Miller, Surface electromagnetic waves in rectangular grooves, Journal of Engineering Physics, 25, 1972 (1955).

    Google Scholar 

  45. M. A. Miller, V.I. Talanov, Surface electromagnetic waves guided by a boundary with slight curvature, Journal of Engineering Physics, 26, 2755 (1956).

    Google Scholar 

  46. D. I. Mirovitsky and G.G. Valieev, Surface wave directional couplers, Radio Engineering and Electronics, 5, 1078 (1960).

    Google Scholar 

  47. D. I. Mirovitsky and G.G. Valieev, Hybrid connections on surface wave lines, Radio Engineering and Electronics, 5, 1179 (1960).

    Google Scholar 

  48. B. Ya. Moizhes, Averaged electromagnetic boundary conditions for metallic grids, Journal of Engineering Physics, 25, 1 (1955).

    Google Scholar 

  49. V. I. Molotkov, Investigation of the propagation of surface waves along cylindrical conductors, Transactions of the Leningrad Polytechnic Institute, Radio Physics, No. 181, 60 (1955).

    Google Scholar 

  50. M. S. Neumann, The nature of surface electromagnetic waves and methods for their calculation, Transactions of Moscow Institute of Aeronautics, issue 50, 93 (1955).

    Google Scholar 

  51. B. A. Poperechenko, Surface electromagnetic waves on a flat layer, Transactions of the Graduate School, Radio Engineering and Electronics, No. 2, 36 (1958).

    Google Scholar 

  52. B. A. Poperechenko, Surface electromagnetic waves on a coated cylinder, Transactions of the Graduate School, Radio Engineering and Electronics, No. 2, 42 (1958).

    Google Scholar 

  53. N. A. Semienov, Attenuation in a dielectric waveguide, Transactions of the Graduate School, Radio Engineering and Electronics, No. 1, 83 (1959).

    Google Scholar 

  54. N. A. Semienov, Wave types of a dielectric waveguide, Transaction of the Graduate School, Radio Engineering and Electronics, No. 4, 60 (1958).

    Google Scholar 

  55. V. Ya. Smorgonsky, Calculation of the phase and group velocities of surface waves, Radio Engineering, 10, Ho. 5, 25 (1955).

    Google Scholar 

  56. V. I. Talanov, Surface electromagnetic waves in systems with non-uniform impedance, Bulletin of Higher Education Institutions, Radio Physics, 2, 132 (1959).

    Google Scholar 

  57. V. V. Tyashelov, An experimental investigation of the interaction of single-wire transmission lines, Radio Engineering and Electronics, 4, 592 (1959).

    Google Scholar 

  58. Ya. B. Feinberg, M. P. Gorbatenko, Electromagnetic wares in plasma with a magnetic field, Journal of Engineering Physics, 29, 549 (1959).

    Google Scholar 

  59. P. R. Oheriep, Bends in surface waveguides, Kiev, 1957.

    Google Scholar 

  60. V. P. Shestopalov, K. P. Yatsuk, The use of slow surface waves for measurement of the specific inductive capacitance of material at super-high frequencies, I, Journal of Engineering Physics, 29, 819 (1959).

    Google Scholar 

  61. V. P. Shestopalov, K. P. Yatsuk, The use of slow surface waves for measurement of the specific inductive capacitance of material at super-high frequencies, II, Journal of Engineering Physics, 29, 1090 (1959).

    Google Scholar 

  62. V. P. Shestopalov, K. P. Yatsuk, I. P. Yakimenko, The use of slow surface waves for measurement of the specific inductive capacitance of material at super-high frequencies, III, Journal of Engineering Physics, 29, 1130 (1959).

    Google Scholar 

  63. A. I. Shtirov, On the question of channeling uniform retarding systems, Radio Engineering and Electronics, 2, 244 (1957).

    Google Scholar 

  64. A. I. Shtirov, On the propagation of cylindrio surface waves in periodio structures, Radio Engineering and Electronics, 4, 903 (1959).

    Google Scholar 

  65. K. P. Yatsuk, G.N. Bichkova, Application of resonant retarding systems for the measurement of specific inductive capacitance of materials at super-high frequencies, Journal of Engineering Physics, 30, 165 (1959).

    Google Scholar 

  66. H. M. Barlow, Surface waves, Proceedings of the Institute of Radio Engineers, 46, 1413 (1958).

    Google Scholar 

  67. H. M. Barlow, Surface waves: A proposed definition, Proceeding of the Institute of Electrical Engineers, 107 B, 240 (1960).

    Google Scholar 

  68. H. M. Barlow, A. E. Karbowiak, An investigation of the characteristics of cylindrical surface waves, Proceedings of the Institute of Electrical Engineers, 100, III, 321, 341 (1953).

    Google Scholar 

  69. H. M. Barlow, The power radiated by a surface wave, circulating around a cylindrical surface, Proceedings of the Institute of Electrical Engineers, B-106, 180 (1959).

    Google Scholar 

  70. T. Berceli, Propagation of the surface wave along an insulated conductor, Acta tech. Acad. sci. hung,, 17, 219 (1957).

    Google Scholar 

  71. T. Berceli, Examination of surface wave lines, Acta tech. Acad. sci. hung., 25, 257 (1959).

    Google Scholar 

  72. F. Bertein, W. Chahid, On obtaining retarded electromagnetic waves by means of cylindric current systems, C. R. Acad, sci., 242, 2918 (1956).

    Google Scholar 

  73. A. D. Bresler, On the TE no mode of a ferrite slab loaded rectangular waveguide and the associated thermodynamic paradox, Transactions of the Institute of Radio Engineers, MTT-8, 81 (1960).

    Google Scholar 

  74. Butterfield, Dielectric sheet radiators, Transactions of the Institute of Radio Engineers, AP-3, 152 (1954).

    Google Scholar 

  75. B. Chiron, Influence of surrounding conditions on the propagation of a surface wave. An example of the construction of an antenna feeder system consisting of a rectangular waveguide and of a line with a surface wave, Cable and transm., 11, 237 (1957).

    Google Scholar 

  76. Cu Fu - nian, Electromagnetic waves propagating along a spiral, Acta phys. sinica, 15, 637 (1959).

    Google Scholar 

  77. J. Dain, The propagation of glow waves, Electronic Engr., 30, 388 (1958).

    Google Scholar 

  78. R. S. Elliott, Spherical surface wave antennas, Transactions of the Institute of Radio Engineers, AP-4, 422 (1956).

    Google Scholar 

  79. B. Epstein, G. Lourier, Determination, measurement and characteristics of phase velocities in systems with periodic structure, Ann. radioelectr., 10, 33, 64 (1955).

    Google Scholar 

  80. P. S. Epstein, On the possibility of electromagnetic surface waves, Proc. Nat. Acad. Sci. USA, 40, 1158 (1954).

    Google Scholar 

  81. L. B. Pelsen, Electromagnetic properties of wedge and cone with a linearly varying surface impedance, Transactions of the Institute of Radio Engineers, AP-7, Special Suppl., 231 (1959).

    Google Scholar 

  82. B. Friedman, Surface waves over a lossy conductor, Transactions of the Institute of Radio Engineers, AP-7, Special Suppl., 227 (1959).

    Google Scholar 

  83. L. O. Goldstone, A. A. Oliner, A note on surface waves along corrugated structure, Transactions of the Institute of Radio Engineers, AP-7, 274 (1959).

    Google Scholar 

  84. G. Goubau, Design of surface wave transmission lines, Electronics, 28, 6A, 60 (1955).

    Google Scholar 

  85. G. Goubau, C. E. Sharp, Investigations with a model surface wave transmission line, Transactions of the Institute of Radio Engineers, AP-5, 242 (1957).

    Google Scholar 

  86. G. Goubau, Some characteristics of surface wave trans-mission lines for long-distance transmission, Proceedings of the Institute of Electrical Engineers, B 106, Suppl. 13, 166 (1959).

    Google Scholar 

  87. R. C. Hansen, Single slab arbitrary polarization surface wave structure, Transactions of the Institute of Radio Engineers, MTT-5, 115 (1957).

    Google Scholar 

  88. F. R. Huber, H. Rudat, Operating characteristics and uses of the Goubau line, Broadcasting technical Informations, 3, XII, 277 (1959).

    Google Scholar 

  89. C. Jauquet, Transverse magnetic surface waves on an infinite conducting cylinder, Bull. cl. Sci. Acad. roy. Belgique, 42, 1178 (1956).

    Google Scholar 

  90. A. E. Karbowiak, The concept of heterogeneous surface wave impedance and its application to the cylindrical cavity resonators, Proceeding of the Institute of Electrical Engineers, C 105, 1 (1958).

    Google Scholar 

  91. A. E. Karbowiak, The elliptic surface wave, Brit. J. Appl. Phys., 5, 328 (1954).

    Article  Google Scholar 

  92. A. E. Karbowiak, Surface E H-wave, Wireless Engr., 31, 71 (1954).

    Google Scholar 

  93. A. E. Karbowiak, Theory of composite guides: Stratified guides for surface waves, Proceedings of the Institute of Electrical Engineers, III, 101, 72, 238 (1954).

    Google Scholar 

  94. B. Kockel, Sommerfeld's surface waves, Ann. Physik, 1, 145 (1958).

    MathSciNet  Google Scholar 

  95. Kikuchi Hiroshi, Yamashite Eikichi, Hybrid waves propagating on a line with Goubau's surface wave, J. Inst. Electr. Comnun. Engr. Japan, 43, 39 (1960).

    Google Scholar 

  96. B. Lax, K. Button, Theory of ferrites in rectangular waveguide, Transactions of the Institute of Radio Engineers, AP-4, 531 (1956).

    Google Scholar 

  97. G. G. Mac Farlane, Surface impedance of an infinite parallel-wire grid at oblique angles of incidence, Journal of the Institute of Electrical Engineers, III A, 93, 1523 (1946).

    Google Scholar 

  98. D. Markuse, Examination of power exohange and field distribution in parallel surface waveguides, Arch, electr. Ubertrag, 10, 117 (1956).

    Google Scholar 

  99. Matsuo Iukito, Edisutani Keisuko, Cho Ioscio, Phase velocity in Karp's retarded system, Menu Inst. Scient. and Industr. Rec. Asaka Univ., 15, 9 (1958).

    Google Scholar 

  100. A. G. Mungall, D. Horris, Surface wave propagation over a sand-covered conducting plane, Canad. J. Phys., 37, 1349 (1959).

    Article  Google Scholar 

  101. A. G. Mungall, D. Morris, The group velocity of plane surface waves, Canad. J. Phys., 38, 779 (1960).

    Article  MATH  Google Scholar 

  102. D. Morris, A. G. Mungall, TE surface waves guided by a dielectric-covered metal plane, Canad. J. Phys., 38, 1553 (1960).

    Article  Google Scholar 

  103. V. Oehrl, Propagation of slow electromagnetic waves along a heterogeneous layer of plasma, Journal of Applied Physics, 9, 164 (1957).

    MATH  Google Scholar 

  104. A. A. Oliner, A. Hessel, Guided waves on sinusoidally modulated reactance surfaces, Transactions of the Institute of Radio Engineers, AP-7, Special Suppl., 201 (1959).

    Google Scholar 

  105. R. L. Pease, On the propagation of surface waves over an infinite grounded ferritt layer, Transactions of the Institute of Radio Engineers, AP-6, 13 (1953).

    Google Scholar 

  106. T. E. Roberts, An experimental investigation of the single-wire transmission line, Transactions of the Institute of Radio Engineers, AP-2, 46 (1954).

    Google Scholar 

  107. Shimmel, latest publications on the propagation of surface waves, Communication Engineering, 4, 279 (1954).

    Google Scholar 

  108. G. Schulten, Novel method for measuring impedance on surface wave transmission lines, Proceedings of the Institute of Radio Engineers, 47, 76 (1959).

    Google Scholar 

  109. S. A. Schelkunoff, Anatomy of “surface waves”, Transactions of the Institute of Radio Engineers, AP-7, HI, Special Suppl., 133 (1959).

    Google Scholar 

  110. K. P. Sharma, The estimation of the reactance resistence of a loss-free surface supporting surface wave, Proceedings of the Institute of Electrical Engineers, B 106, 427 (1959).

    Google Scholar 

  111. M. Sugi, T. Nakahara, O-guide and X-guide: An advanced surface wave transmission concept, Transactions of the Institute of Radio Engineers, MTT-7, 366 (1959).

    Article  Google Scholar 

  112. P. Szulkin, A theory of Souljau's surface waves, Arch, elcctrotechniki, 8, 313 (I959).

    Google Scholar 

  113. Tashio Hosono, Surface resistance of corrugated conductors, Proceeding of the Institute of Radio Engineers, 48, 247 (i960).

    Google Scholar 

  114. Uchida Hidenari, Hichida Shigeo, Surface and space waves on a transmission line with a surface wave, Sci. Repts. Res. Insts. Tohoku Unn. Ser. B, Electr. Conunun., 6, No. 3–4, 217 (1955).

    Google Scholar 

  115. J. Von Bladed, O. Jr. Von Rohr, Semicircular ridges in rectangular waveguides, Transactions of the Institute of Radio Engineers, KTT-5, 103 (1957).

    Google Scholar 

  116. J. R. Wait, Guiding of electromagnetic waves directed by uniformly rough surfaces, Transactions of the Institute of Radio Engineers, AP-7, Special Suppl., 154 (1959).

    MathSciNet  Google Scholar 

  117. J. R. Wait, Propagation of electromagnetic waves along a thin sheet of plasma, Canad, J. Phys., 38, 1586 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  118. E. Weissberg, Experimental determination of wavelengths in dielectric-filled periodic structures, Transactions of the Institute of Radio Engineers, MTT-7, 480 (1959).

    Article  Google Scholar 

  119. J. C. Walling, Interdigital Glow-wave structures, Onde electr., 37, 136 (1957).

    Google Scholar 

  120. J. C. Walling, Interdigital and other slow wave structures, Electron and Control, 3, 239 (1957).

    Google Scholar 

  121. Sato Risaburo, Khariu Tokio, Tiba Dziro, Calculation of surface wave transmission line and matching devices with spiral elements, Techn. J. Japan Broadcast. Corp. 11, 24 (1959).

    Google Scholar 

  122. Sato Risaburo, Determination of transmission losses in Goubau lines and spiral lines in UHF and SHF bands, Television, 13, 248 (1959).

    Google Scholar 

  123. Sugi, Nakahara, Left-handed (counterclockwise) polarized waves from dielectrics of different cross sections, J. Inst. Electr. Comraun. Engrs. Japan, 42, 731 (1959).

    Google Scholar 

  124. Iosida, Shielded transmission line with a surface wave, Toshiba Rev., 11, 840 (1956).

    Google Scholar 

  125. Utida, Nishida, Nagasavo, Uda, Shunting reactive elements in surface wave transmission lines, J. Inst. Electr. Commun. Engrs. Japan, 33, 353 (1955).

    Google Scholar 

  126. Yakhagi, Forked transmission lines with a surface wave, Bull. Electrotechn. Lab., 23, 269 (1958).

    Google Scholar 

  127. M. S. Bobrovnikov, Lumped excitation of cylindric conductors covered with a dielectric, Transactions of the Siberian Institute of Engineering Physics, Tomsk University, 36, 37 (1958).

    Google Scholar 

  128. S. M. Yerevkin, Excitation of an infinite cylinder with non-uniform boundary conditions by Leontovich's magnetic current loop, Transactions (Scientific Reports) of Higher School, Radio Engineering and Electronics, No.3, 54 (1958).

    Google Scholar 

  129. V. V. Vladimirsky, Propagation of electromagnetic waves on a single-wire line, Bulletin of the USSR Academy of Sciences, Physics Series, 8, 139 (1944).

    Google Scholar 

  130. G. D. Malyuzhinets, Generalization of Veilya's formula for waveguide field over an absorbing surface, Transactions of the USSR Academy of Sciences, 60, 367 (1948).

    MATH  Google Scholar 

  131. B. A. Poperechenko, Excitation of a cylinder with layer, Transactions of Higher School, Radio Engineering and Electronics, No. 4, 46 (1958).

    Google Scholar 

  132. B. A. Poperechenko, Excitation of a large diameter cylinder with layer, Transactions of Higher School, Radio Engineering and Electronics, No. 1, 62 (1959).

    Google Scholar 

  133. L. S. Tartakovsky, Radiation of dipole over a flat homogeneous ground, Radio Engineering, 13, No.4,36 (1958); 14, No.8, 8 (1959).

    Google Scholar 

  134. O. N. Tereshin, Application of a fictitious magnetic current to the solution of the problem, due to Leontovich, of radiation from an aerial above a plane with non-homogeneous boundary conditions, Radip Engineering, 12, No. 4, 24 (1957).

    Google Scholar 

  135. V. A. Pilonenko, Excitation of a double-layer dielectric cylinder of infinite length by electric or magnetic dipole, Transactions of the Siberian Institute of Engineering Physics at Tomsk University, 36, 364 (1958).

    Google Scholar 

  136. M. D. Khaskind, Excitation of surface electromagnetic waves on flat dielectric coatings, Radio Engineering and Electronics, 5, 188 (1960).

    Google Scholar 

  137. M. D. Khaskind, Propagation of sonic and electromagnetic waves in a half space, Journal of Acoustics, 5, 464 (1959).

    Google Scholar 

  138. D. V. Shannikov, Relationship of power transferred by waves and excited by a slot on a plane covered by a layer of dielectric, Radio Engineering, 15, No.2, 27 (1960).

    MATH  Google Scholar 

  139. H. Bremner, The surface-wave concept in connection with propagation trajectories associated with the Sommerfeld problem, Transactions of the Institute of Radio Engineers, AP-7, Special Suppl., 175 (1959).

    Google Scholar 

  140. J. Brown, Some theoretical results for surface wave launchers, Transactions of the Institute of Radio Engineers, AP-7, Special Suppl., 169 (1959).

    Google Scholar 

  141. R. H. Clarke, A method of estimating the power radiated directly at the feed of a dielectric-rod aerial, Proceedings of the Institute of Electrical Engineers, B 104, 511 (1957).

    Google Scholar 

  142. A. L. Oullen, Surface wave resonance effect in a reactive cylindrical structure excited by an axial line source, J. Research NBS, 64 D, 13 (1960).

    Google Scholar 

  143. J. W. Duncan, The efficiency of surface wave excitation on a dielectric cylinder, Transactions of the Institute of Radio Engineers, MTT-7, 257 (1959).

    Article  Google Scholar 

  144. A. D. Frost, P. R. McGeoch, C. R. Mungins, The excitation of surface waveguides and radiating slots by strip-oirouit transmission lines, Transactions of the Institute of Radio Engineers, MTT-4, 218 (1956).

    Google Scholar 

  145. K. Purutsu, On the electro-magnetic radiation from a vertical dipole over the surface of arbitrary surface impedance, J. Radio Res. Labs., 6, 25, 269 (1959).

    Google Scholar 

  146. K. Purutsu, Wave propagation over an irregular terrain, Transactions of the Institute of Radio Engineers, AP-7, Special Suppl., 209 (1959).

    Google Scholar 

  147. G. Goubau, Relationship between surface and space waves, Onde electr., 37, 482 (1957).

    Google Scholar 

  148. C. Jauquet, Excitation in a round dielectric rod of an electric-type surface wave, Ann. telecommuns., 12, No. 6, 217 (1957).

    MathSciNet  Google Scholar 

  149. C. Jauquet, Excitation of a transverse magnetic surface-wave propagated on a dielectric cylinder, Bull. cl. sci. Acad. roy. Belgique, 42, No. 7, 802 (1956).

    MathSciNet  Google Scholar 

  150. J. B. Keller, F. C. Karal, Surface wave excitation and propagation, J. Appl. Phys., 31, 1039 (1960).

    Article  MathSciNet  Google Scholar 

  151. G. J. Rich, R. H. Du Hamel, Discussion on “the launching of a plane surface wave”, Proceedings of the Institute of Electrical Engineers, B 103, 787 (1956).

    Google Scholar 

  152. J. H. Richmond, Plat surface waves and theorems of reciprocity. I. Dispersion by dielectric and metallic objects, II. Surface waves on flat and laminated dielectric strips, III. Excitation of surface waves on flat dielectric strips. Bull. Engng. Experim., Stat. Coll. Engng. Ohio State Univ., 28, 176, VIII (1959).

    Google Scholar 

  153. J. Robieux, General laws of linkage between wave radiators. Application to surface waves and propagation, part I, Ann. radioelectr., 14, 187 (1959).

    MathSciNet  Google Scholar 

  154. J. Robieux, General theorems on the transmission coefficient from a transmitting to a receiving system, Transactions of the Institute of Radio Engineers, AP-7, Special Supply 118 (1959).

    Google Scholar 

  155. A. Sommerfeld, On propagation of electromagnetic waves in radio telegraphy, Ann. Phys., 28, 665 (1909).

    Article  Google Scholar 

  156. C. T. Tai, The effect of a grounded slab on the radiation from a line source, J. Appl. Phys., 22, 405 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  157. B. Van Der Pol, On discontinuous electromagnetic waves and the occurrence of a surface wave, Transactions of the Institute of Radio Engineers, AP-4, 288 (1956).

    Google Scholar 

  158. J. R. Wait, A note on the distribution of a non-stationary surface wave, Canad. J. Phys., 35, 1146 (1957).

    Article  MATH  Google Scholar 

  159. J. R. Wait, A. M. Conda, The resonance excitation of a corrugated-cylinder antenna, Proceedings of the Institute of Electrical Engineers, C-107, 234 (1960).

    Google Scholar 

  160. J. R. Wait, On the excitation of electromagnetic surface waves on a curved surface, Transactions of the Institute of Radio Engineers, AP-8, 445 (1960).

    Google Scholar 

  161. N. A. Armand, Excitation of electromagnetic surface waves by an open-end coaxial line, Radio Engineering and Electronics, 4, 1609 (1959).

    MathSciNet  Google Scholar 

  162. A. E. Bezmenov, Diffraction of electromagnetic waves on a semi-infinite array, Bulletin of Higher Education Institutions, Radio Engineering, 1, 271 (1958).

    Google Scholar 

  163. V. I. Bespalov, Propagation of waves in transmission lines with heterogeneous surface impedance, Bulletin of Higher Education Institutions, Radio Physics, 1, No. 3, 54 (1958).

    Google Scholar 

  164. V. I. Bespalov, E. Ya. Daume, Propagation of electromagnetic waves in a special line with small discontinuities, Bulletin of Higher Education Institutions, Radio Physics, 2, 213 (1959).

    Google Scholar 

  165. L. A. Weinstein, On the excitation of E O wave in a round waveguide by means of a coaxial line, Transactions of the USSR Academy of Sciences, 59, 1421 (1948).

    Google Scholar 

  166. G. A. Grinbarg, V. A. FooK, Toward a theory of coastal electromagnetic wave refraction, Examinations on radio wave propagation, collection 2, edited by B.A.Vvedensky, published by the USSR Academy of Sciences, M. -L., 1948.

    Google Scholar 

  167. Guan-Din-Khia, Sonic surface wave diffraction on semi-infinite tube and rod impedances, Transactions of the USSR Academy of Sciences, 124, 559 (1959).

    Google Scholar 

  168. G. D. Malyuzhnets, Excitation, reflection and radiation of surface waves on a taper with predictable boundary impedances, Transactions of the USSR Academy of Sciences, 121, 436 (1958).

    Google Scholar 

  169. P. S. Mikazan, Electromagnetic wave diffraction on an open-end spiral waveguide, Transactions of the USSR Academy of Sciences, 129, 502 (1959); Radio Engineering and Electronics, 5, 403 (1960).

    Google Scholar 

  170. P. S. Mikazan, Electromagnetic wave diffraction on the butt joint of a spiral continuous waveguide, Radio Engineering and Electronics, 5, 597 (1960).

    MathSciNet  Google Scholar 

  171. A. N. Sivov, Incidence of a flat electromagnetic wave on a planar array (when vector H is parallel to the conductors), Radio Engineering and Electronics, 6, 58 (1961).

    MathSciNet  Google Scholar 

  172. V. I. Talanov, Surface wave excitation by the open-end of a flat waveguide, Journal of Engineering Physics, 28, 1275 (1958).

    MathSciNet  Google Scholar 

  173. V. I. Talanov, Excitation of dielectric waveguides, Bulletin of Higher Education Institutions, Radio Physics, 2, 902 (1959).

    Google Scholar 

  174. V. I, Talanov, Electromagnetic wave diffraction by a step in waveguide surface impedance, Bulletin of Higher Education Institutions, Radio Physics, 2, 132 (1959).

    Google Scholar 

  175. N. G. Trenev, Electromagnetic surface wave diffraction on an impedance step, Radio Engineering and Electronics, 3, 27 (1958).

    MathSciNet  Google Scholar 

  176. N. G. Trenev, Electromagnetic surface wave diffraction on a semi-infinite impedance plane, Radio Engineering and Electronics, 3, 163 (1958).

    MathSciNet  Google Scholar 

  177. V. V. Tyazhelov, Approximate calculation of the influence of discontinuities on single-wire transmission lines, Bulletin of Higher Education Institutions, Radio Physics, 3, 89 (1960).

    Google Scholar 

  178. C. M. Angulo, W. S. Chang, A variational expression for the terminal admittance of a semi-infinite dielectric rod, Transactions of the Institute of Radio Engineers, AP-7, 207 (1959).

    Google Scholar 

  179. C. M. Angulo, W. S. Chang, The launching of surface waves by a parallel plate waveguide, Transactions of the Institute of Radio Engineers, AP-7, 359 (1959).

    Google Scholar 

  180. C. M. Angulo, Diffraction of surface waves by a semi-infinite dielectric slab, Transactions of the Institute of Radio Engineers, AP-5, 100 (1957).

    Google Scholar 

  181. A. E. Heins, Green's function for periodic structures in the diffraction theory: Application to parallel plate, part 1, J. Math, and Mech., 6, 401 (1957).

    MATH  MathSciNet  Google Scholar 

  182. A. E. Heins, Green's function for periodic structures in the diffraction theory: Application to parallel plate structure region, part 2, J. Math, and Mech., 6, 629 (1957).

    MATH  MathSciNet  Google Scholar 

  183. J. Kane, The efficiency of launching surface waves on a reactive half plane by an arbitrary antenna, Transactions of the Institute of Radio Engineers, AP-8, 500 (1960).

    Google Scholar 

  184. A. P. Kay, Scattering of a surface wave by a discontinuity in reactance, Transactions of the Institute of Radio Engineers, AP-7, 22 (1959).

    Google Scholar 

  185. S. N. Karp, P. C. Karal, Launching of surface waves on both surfaces of a rectangular taper, Communs. Pure and Appl. Mathem., 12, 435 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  186. D. K. Ralph, Theory of diffraction on compound cylinder, J. Res. NBS 65 D, No. 1, 19 (1961).

    MathSciNet  Google Scholar 

  187. G. Weill, Study of a diffraction problem of electromagnetic surface waves: Application to the theory of the dielectric aerial, Ann. radioelectr., 10, 228 (1955).

    Google Scholar 

  188. Morivaki Kavamura, Surface wave radiator. The matching of electromagnetic waves propagating on the conductor surface, Seisan kentyu, 8, 11, 1–4 (1958), Japan.

    Google Scholar 

  189. N. N. Govorun, Integral equations for antenna body of revolution with impedance surface, Transactions of the USSR Academy of Sciences, 126, 49 (1959).

    MathSciNet  Google Scholar 

  190. K. I. Grineva, Surface wave antenna with a swinging beam, Radio Engineering, 14, 10, 15 (1959).

    Google Scholar 

  191. K. I. Grineva, Implementation of surface wave antennas, Bulletin of Higher Education Institutions, Radio Engineering, 2, 109 (1959).

    Google Scholar 

  192. G. A. Evstropov, Ground waves over a ribbed surface with periodic change of impedance, Problems of Radio-electronics, Series of General Technology, Edit. 13, 13 (1960).

    Google Scholar 

  193. M. A. Miller, The matching of uniform boundary conditions in the theory of thin aerials, Journal of Engineering Physics, 24, 1483 (1954).

    Google Scholar 

  194. V. I. Talanov, Antenna radiation with periodically changing surface impedance, Bulletin of Higher Education Institutions Radio Physics, 3, 802 (1960).

    Google Scholar 

  195. O. N. Tereshin, An inverse electro dynamic problem applicable to an unlimited flat impedance surface, Transactions of Higher School, Radio Engineering and Electronics, No. 4, 32 (1958).

    Google Scholar 

  196. O. N. Tereshin, A. S. Belov, Slot antenna decoupling by means of an impedance structure in the slot plane, Bulletin of Higher Education Institutions, Radio Engineering, 3, 359 (1960).

    Google Scholar 

  197. O. N. Tereshin, A. F. Chaplin, Inverse electrodynamic problem regarding a symmetrically excited impedance cylinder, Transactions of Higher School, Radio Engineering and Electronics, No. 2, 51 (1958).

    Google Scholar 

  198. H. W. Cooper, M. Hoffman, S. Isaacson, Image line surface wave antenna, Nat. Coot. Rec. of the Institute of Radio Engineers, 6, 230 (1958).

    Google Scholar 

  199. J. W. Duncan, R. H. Du Hamel, A technique for controliag the radiation from dielectric rod waveguides, Transactions of the Institute of Radio Engineers, AP-5, 284 (1957).

    Google Scholar 

  200. M. J. Ehrlich and others, Corrugated surface antennas, Nat. Conv. Rec. of the Institute of Radio Engineers, P. 2, 18 (1953).

    Google Scholar 

  201. H. Ehrenspeck, W. Gerbes, E.J. Zucker, Surface wave antennas, Nat. Conv. Rec. of the Institute of Radio Engineers, 1, 25 (1954).

    Google Scholar 

  202. H. W. Ehrenspeck, The backfire antenna, a new type of directional line source, Proceedings of the Institute of Radio Engineers, 48, 109 (1960).

    Google Scholar 

  203. H. W. Ehrenspeck, W. Kearns, Two-dimensional endfire array with increased gain and side lobe reduction, Wescon Convention Record of the Institute of Radio Engineers, p. 1, 217 (1957).

    Google Scholar 

  204. H. W. Ehrenspeck, H. Poehler, A new method for obtaining maximum gain from Yagi antennas, Transactions of the Institute of Radio Engineers, AP-7, 379 (1959).

    Google Scholar 

  205. R. S. Elliott, Serrated waveguide. I. Theory, Transactions of the Institute of Radio Engineers, AP-5, 270 (1957).

    Google Scholar 

  206. R. S. Elliott, Spherical surface wave antennas, Transactions of the Institute of Radio Engineers, AP-4, 422 (1953).

    Google Scholar 

  207. R. S. Elliott, E. N. Rodda, Parasitic arrays excited by surface reive, Transactions of the Institute of Radio Engineers, AP-3, 140 (1955).

    Google Scholar 

  208. I. B. Pelsen, Radiation from a tapered surface wave antenna, Transactions of the Institute of Radio Engineers, AP-8, 577 (1960).

    Google Scholar 

  209. L. O. Goldstone, A. A. Oliner, Leaky-wave antennas. I. Rectangular waveguides, Transactions of the Institute of Radio Engineers, AP-7, 307 (1959).

    Google Scholar 

  210. W. Hersch, The surface-wave aerial, Proceedings of the Institute of Electrical Engineers, C 107, 12, 202 (1960).

    MathSciNet  Google Scholar 

  211. R. C. Honey, A flush-mounted leaky-wave antenna with predictable patterns, Transactions of the Institute of Radio Engineers, AP-7, 320 (1959).

    Google Scholar 

  212. R. W. Hougardy, R. C. Hansen, Scanning surface wave antennas - oblique surface waves over a corrugated conductor, Transactions of the Institute of Radio Engineers, AP-6, 370 (1958).

    Google Scholar 

  213. B. F. Hjneman, R. W. Hougardy, Waveguide loaded surface wave antenna, Nat. Oonvo Rsc. of the Institute of Radio Engineers, p. 1, 6, 225 (1953).

    Google Scholar 

  214. R. Jähn, Investigation of technical application of cylindrical surface wave aerials as radar aerials, Science of communications, 9, 418 (1959).

    Google Scholar 

  215. E. M. I. Jones, An annular corrugated-surface antenna, Proceedings f of the Institute of Radio Engineers, 40, 721 (1952).

    Google Scholar 

  216. E. M. I. Jones, R. A. Folsom, A note on the circular dilelectric-disk antenna, Proceedings of the Institute of Radio Engineers, 41, 798 (1953).

    Google Scholar 

  217. K. C. Kelly, S. S. Elliott, Serrsted waveguide, II. Experiment, Transactions; of the Institute of Radio Engineers, AP-5, 276 (1957).

    Google Scholar 

  218. E. G. Malech, S. J. Blank, Experiments and calculations on surface wave antennas, Nat. Gonv. Rec. of the Institute of Radio Engineers, 7, p. 1, 74 (1959).

    Google Scholar 

  219. I. W. Mickey, G. G. Chadmick, Closely spaced high dielectric constant polyrod arrays, Hat. Conv. Rec. of the Institute of Radio Engineers, p. 1, 213 (1958).

    Google Scholar 

  220. K. E. Mehuhr, E. H. Scheibe, Surface-wave dielectric-disk antenna, Proceedings of the Nat. Electronics Conf., 14, 135 (1958).

    Google Scholar 

  221. R. E. Plumper, Surface wave beacon antennas, Transactions of the Institute of Radio Engineers, AP-6, 105 (1958).

    Google Scholar 

  222. R. L. Pease, Radiation from modulated surface wave structures, Nat. Conv. Rec. of the Institute of Radio Engineers, 5, p. 1, 161 (1957).

    Google Scholar 

  223. F. Reggia, E. G. Spencer, R. D. Hatcher, J. E. Tompkins, Perrod radiator system, Proceedings of the Institute of Radio Engineers, 45, 344 (1957).

    Google Scholar 

  224. W. Rotman, A. A. Oliner, Asymmetrical trough waveguide antennas, Transactions of the Institute of Radio Engineers, AP-7, 153 (1959).

    Google Scholar 

  225. D. L. Sengupta, On the phase velocity of wave propagation along an infinite Yagi structure, Transactions of the Institute of Radio Engineers, AP-6, 234 (1958).

    Google Scholar 

  226. D. L. Sengupta, The radiation characteristics of a zig-zag antenna, Transactions of the Institute of Radio Engineers, AP-6, 191 (1958).

    Google Scholar 

  227. P. Serrachioli, C. A. Levis, The calculated phase velocity of long end-fire uniform dipole arrays, Transactions of the Institute of Radio Engineers, AP-7, Special Suppl., 424 (1959).

    Google Scholar 

  228. J. S. Simon, G. Weill, A new type of end-fire aerial, Ann. radioelectr., 8, 33, 183 (1953).

    Google Scholar 

  229. J. O. Spector, An investigation of periodic rod structure for Yagi aerials, Proceedings of the Institute of Electrical Engineers, B 105, 38 (1958).

    Google Scholar 

  230. J. R. Wait, A. M. Conda, The radiation patterns and conductances of slots out on rectangular metal plates, Proceedings of the Int. Congress on UHF (ultrahigh frequency) Circuits and Antennas, October, 1957.

    Google Scholar 

  231. C. H. Walter, Surface-wave Luneberg lens antennas, Transactions of the Institute of Radio Engineers, AP-8, 508 (1960).

    Google Scholar 

  232. W. L. Weeks, Coupled waveguide excitation of traveling wave antenna, Wescon Convent. Rec. of the Institute of Radio Engineers, 1, VIII, p. 1, 236 (1957).

    Google Scholar 

Download references

Authors

Editor information

G. Toraldo di Francia

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, M.A., Talanov, V.I. (2011). The Use of the Surface Impedance Concept in the Theory of Electromagnetic Surface Waves. In: di Francia, G.T. (eds) Onde superficiali. C.I.M.E. Summer Schools, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10983-6_9

Download citation

Publish with us

Policies and ethics