Skip to main content

A New Family of Hyper-Bent Boolean Functions in Polynomial Form

  • Conference paper
Cryptography and Coding (IMACC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5921))

Included in the following conference series:

Abstract

Bent functions are maximally nonlinear Boolean functions and exist only for functions with even number of inputs. These combinatorial objects, with fascinating properties, are rare. The class of bent functions contains a subclass of functions the so-called hyper-bent functions whose properties are still stronger and whose elements are still rarer. (Hyper)-bent functions are not classified. A complete classification of these functions is elusive and looks hopeless. So, it is important to design constructions in order to know as many of (hyper)-bent functions as possible. Few constructions of hyper-bent functions defined over the Galois field \({\mathbb F}_{2n}\) (n = 2m) are proposed in the literature. The known ones are mostly monomial functions.

This paper is devoted to the construction of hyper-bent functions. We exhibit an infinite class over \({\mathbb F}_{2n}\) (n = 2m, m odd) having the form \(f(x) = Tr_1^{o(s_1)} (a x^{s_1}) + Tr_1^{o(s_2)} (b x^{s_2})\) where o(s i ) denotes the cardinality of the cyclotomic class of 2 modulo 2n − 1 which contains s i and whose coefficients a and b are, respectively in \({\mathbb F}_{2^{o(s_1)}}\) and \({\mathbb F}_{2^{o(s_2)}}\). We prove that the exponents \(s_1={3(2^m-1)}\) and \(s_2={\frac {2^n-1}3}\), where \(a\in {\mathbb F}_{2n}\) (\(a\not=0\)) and \(b\in{\mathbb F}_4\) provide a construction of hyper-bent functions over \({\mathbb F}_{2n}\) with optimum algebraic degree. We give an explicit characterization of the bentness of these functions, in terms of the Kloosterman sums and the cubic sums involving only the coefficient a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlet, C., Gaborit, P.: Hyperbent functions and cyclic codes. Journal of Combinatorial Theory, Series A 113(3), 466–482 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carlitz, L.: Explicit evualation of certain exponential sums. Math. Scand. 44, 5–16 (1979)

    MATH  MathSciNet  Google Scholar 

  3. Charpin, P., Gong, G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inform. Theory 9(54), 4230–4238 (2008)

    Article  MathSciNet  Google Scholar 

  4. Charpin, P., Gong, G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. In: ISIT 2008, Toronto, Canada, July 6-11, pp. 1758–1762 (2008)

    Google Scholar 

  5. Charpin, P., Helleseth, T., Zinoviev, V.: The divisibility modulo 24 of Kloosterman sums of GF(2m), m odd. Journal of Combinatorial Theory, Series A 114, 322–338 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Charpin, P., Helleseth, T., Zinoviev, V.: Divisibility properties of Kloosterman sums over finite fields of characteristic two. In: ISIT 2008, Toronto, Canada, July 6-11, pp. 2608–2612 (2008)

    Google Scholar 

  7. Charpin, P., Helleseth, T., Zinoviev, V.: Divisibility properties of classical binary Kloosterman sums. Discrete Mathematics 309, 3975–3984 (2009)

    Article  MathSciNet  Google Scholar 

  8. Dillon, J.: Elementary Hadamard difference sets. In: PhD dissertation, University of Maryland (1974)

    Google Scholar 

  9. Dillon, J.F.: Elementary Hadamard Difference sets (1975)

    Google Scholar 

  10. Dillon, J.F., Dobbertin, H.: New cyclic difference sets with Singer parameters. Finite Fields and Their Applications 10(3), 342–389 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lachaud, G., Wolfmann, J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inform. Theory 36(3), 686–692 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Leander, G.: Monomial Bent Functions. IEEE Trans. Inform. Theory 2(52), 738–743 (2006)

    Article  MathSciNet  Google Scholar 

  13. Mesnager, S.: A new class of bent boolean functions. Submitted to journal Design, Codes and Cryptography (special issue WCC 2009) (2009)

    Google Scholar 

  14. Mesnager, S.: A new class of bent boolean functions in polynomial forms. In: Proceedings of international Workshop on Coding and Cryptography, WCC 2009, pp. 5–18 (2009) 5557

    Google Scholar 

  15. Rothaus, O.S.: On ”bent” functions. J. Combin. Theory (A) 20, 300–305 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. Youssef, A.M., Gong, G.: Hyper-Bent Functions. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 406–419. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mesnager, S. (2009). A New Family of Hyper-Bent Boolean Functions in Polynomial Form. In: Parker, M.G. (eds) Cryptography and Coding. IMACC 2009. Lecture Notes in Computer Science, vol 5921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10868-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10868-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10867-9

  • Online ISBN: 978-3-642-10868-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics