Skip to main content

An Improvement to the Gaudry-Schost Algorithm for Multidimensional Discrete Logarithm Problems

  • Conference paper
Cryptography and Coding (IMACC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5921))

Included in the following conference series:

Abstract

Gaudry and Schost gave a low-memory algorithm for solving the 2-dimensional discrete logarithm problem. We present an improvement to their algorithm and extend this improvement to the general multidimensional DLP. An important component of the algorithm is a multidimensional pseudorandom walk which we analyse thoroughly in the 1 and 2 dimensional cases as well as giving some discussion for higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benits Jr., W.: Applications of Frobenius expansions in elliptic curve cryptography. PhD thesis, Royal Holloway, University of London (2008)

    Google Scholar 

  2. Brands, S.: An efficient off-line electronic cash system based on the representation problem, CWI Technical Report CS-R9323 (1993)

    Google Scholar 

  3. Cheon, J.H., Hong, J., Kim, M.: Speeding up the Pollard rho method on prime fields. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 471–488. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Cofman, E.G., Flajolet, P., Flatto, L., Hofri, M.: The maximum of a random walk and its application to rectangle packing. Technical report, INRIA (1997)

    Google Scholar 

  5. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

    Google Scholar 

  6. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) Eurocrypt 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Galbraith, S.D., Scott, M.: Exponentiation in pairing-friendly groups using homomorphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 211–224. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Gallant, R., Lambert, R., Vanstone, S.: Improving the parallelized Pollard lambda search on binary anomalous curves. Mathematics of Computation 69, 1699–1705 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gaudry, P., Schost, E.: A low-memory parallel version of Matsuo, Chao and Tsujii’s algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222. Springer, Heidelberg (2004)

    Google Scholar 

  10. Kim, J.H., Montenegro, R., Peres, Y., Tetali, P.: A birthday paradox for Markov chains, with an optimal bound for collision in the Pollard rho algorithm for discrete logarithm. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 402–415. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

    Google Scholar 

  12. Matsuo, K., Chao, J., Tsujii, S.: An improved baby step giant step algorithm for point counting of hyperelliptic curves over finite fields. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 461–474. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Nishimura, K., Sibuya, M.: Probability to meet in the middle. Journal of Cryptology 2, 13–22 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pollard, J.M.: Monte Carlo methods for index computation mod p. Mathematics of Computation 32(143), 918–924 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pollard, J.M.: Kangaroos, Monopoly and discrete logarithms. Journal of Cryptology 13, 437–447 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pollard, J.M.: Remarks on discrete logs. Private Communication (August 2009)

    Google Scholar 

  17. Ruprai, R.S.: Improvements to the Gaudry-Schost algorithm for multidimensional discrete logarithm problems and applications. PhD Thesis, Royal Holloway University of London (2009)

    Google Scholar 

  18. Shanks, D.: Class number, a theory of factorization and genera. In: Proc. Symposium in Pure Mathematics, vol. 20, pp. 415–440 (1971)

    Google Scholar 

  19. Stinson, D.: Cryptography: Theory and practice, 3rd edn. Chapman & Hall/CRC (2006)

    Google Scholar 

  20. Teske, E.: On random walks for Pollard’s rho method. Mathematics of Computation 70(234), 809–825 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash functions and discrete logarithms. In: ACM Conference on Computer and Communications Security, pp. 210–218 (1994)

    Google Scholar 

  22. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. Journal of Cryptology 12, 1–28 (1999)

    Article  MATH  Google Scholar 

  23. Weng, A.: A low-memory algorithm for point counting on picard curves. Designs, Codes and Cryptography 38(3), 383–393 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galbraith, S., Ruprai, R.S. (2009). An Improvement to the Gaudry-Schost Algorithm for Multidimensional Discrete Logarithm Problems. In: Parker, M.G. (eds) Cryptography and Coding. IMACC 2009. Lecture Notes in Computer Science, vol 5921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10868-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10868-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10867-9

  • Online ISBN: 978-3-642-10868-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics