Abstract
Gaudry and Schost gave a low-memory algorithm for solving the 2-dimensional discrete logarithm problem. We present an improvement to their algorithm and extend this improvement to the general multidimensional DLP. An important component of the algorithm is a multidimensional pseudorandom walk which we analyse thoroughly in the 1 and 2 dimensional cases as well as giving some discussion for higher dimensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benits Jr., W.: Applications of Frobenius expansions in elliptic curve cryptography. PhD thesis, Royal Holloway, University of London (2008)
Brands, S.: An efficient off-line electronic cash system based on the representation problem, CWI Technical Report CS-R9323 (1993)
Cheon, J.H., Hong, J., Kim, M.: Speeding up the Pollard rho method on prime fields. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 471–488. Springer, Heidelberg (2008)
Cofman, E.G., Flajolet, P., Flatto, L., Hofri, M.: The maximum of a random walk and its application to rectangle packing. Technical report, INRIA (1997)
Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)
Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) Eurocrypt 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009)
Galbraith, S.D., Scott, M.: Exponentiation in pairing-friendly groups using homomorphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 211–224. Springer, Heidelberg (2008)
Gallant, R., Lambert, R., Vanstone, S.: Improving the parallelized Pollard lambda search on binary anomalous curves. Mathematics of Computation 69, 1699–1705 (2000)
Gaudry, P., Schost, E.: A low-memory parallel version of Matsuo, Chao and Tsujii’s algorithm. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222. Springer, Heidelberg (2004)
Kim, J.H., Montenegro, R., Peres, Y., Tetali, P.: A birthday paradox for Markov chains, with an optimal bound for collision in the Pollard rho algorithm for discrete logarithm. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 402–415. Springer, Heidelberg (2008)
Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)
Matsuo, K., Chao, J., Tsujii, S.: An improved baby step giant step algorithm for point counting of hyperelliptic curves over finite fields. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 461–474. Springer, Heidelberg (2002)
Nishimura, K., Sibuya, M.: Probability to meet in the middle. Journal of Cryptology 2, 13–22 (1990)
Pollard, J.M.: Monte Carlo methods for index computation mod p. Mathematics of Computation 32(143), 918–924 (1978)
Pollard, J.M.: Kangaroos, Monopoly and discrete logarithms. Journal of Cryptology 13, 437–447 (2000)
Pollard, J.M.: Remarks on discrete logs. Private Communication (August 2009)
Ruprai, R.S.: Improvements to the Gaudry-Schost algorithm for multidimensional discrete logarithm problems and applications. PhD Thesis, Royal Holloway University of London (2009)
Shanks, D.: Class number, a theory of factorization and genera. In: Proc. Symposium in Pure Mathematics, vol. 20, pp. 415–440 (1971)
Stinson, D.: Cryptography: Theory and practice, 3rd edn. Chapman & Hall/CRC (2006)
Teske, E.: On random walks for Pollard’s rho method. Mathematics of Computation 70(234), 809–825 (2001)
van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash functions and discrete logarithms. In: ACM Conference on Computer and Communications Security, pp. 210–218 (1994)
van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. Journal of Cryptology 12, 1–28 (1999)
Weng, A.: A low-memory algorithm for point counting on picard curves. Designs, Codes and Cryptography 38(3), 383–393 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Galbraith, S., Ruprai, R.S. (2009). An Improvement to the Gaudry-Schost Algorithm for Multidimensional Discrete Logarithm Problems. In: Parker, M.G. (eds) Cryptography and Coding. IMACC 2009. Lecture Notes in Computer Science, vol 5921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10868-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-10868-6_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10867-9
Online ISBN: 978-3-642-10868-6
eBook Packages: Computer ScienceComputer Science (R0)