Subspace Codes

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5921)


This paper is a survey of bounds and constructions for subspace codes designed for the injection metric, a distance measure that arises in the context of correcting adversarial packet insertions in linear network coding. The construction of lifted rank-metric codes is reviewed, along with improved constructions leading to codes with strictly more codewords. Algorithms for encoding and decoding are also briefly described.


Network Code Association Scheme Matrix Code Rank Distance Schubert Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kötter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)CrossRefGoogle Scholar
  2. 2.
    Silva, D., Kschischang, F.R.: On metrics for error correction in network coding. IEEE Trans. Inf. Theory (to appear 2009)Google Scholar
  3. 3.
    Silva, D., Kschischang, F.R., Kötter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008)CrossRefGoogle Scholar
  4. 4.
    Silva, D., Kschischang, F.R.: Universal secure network coding via rank-metric codes. IEEE Trans. Inf. Theory (2008) (submitted for publication)Google Scholar
  5. 5.
    Katti, S., Katabi, D., Balakrishnan, H., Médard, M.: Symbol-level network coding for wireless mesh networks. In: ACM SIGCOMM, Seattle, WA (August 2008)Google Scholar
  6. 6.
    Wang, H., Xing, C., Safavi-Naini, R.: Linear authentication codes: bounds and constructions. IEEE Trans. Inf. Theory 49(4), 866–872 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Xia, S.T., Fu, F.W.: Johnson type bounds on constant dimension codes. Designs, Codes and Cryptography 50(2), 163–172 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Borel, A.: Linear Algebraic Groups. In: Grad. Texts Math., 2nd edn., vol. 126. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, New York (1989)zbMATHGoogle Scholar
  10. 10.
    van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  11. 11.
    Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inform. Transm. 21(1), 1–12 (1985)zbMATHGoogle Scholar
  12. 12.
    Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. J. of Comb. Theory. Series A 25, 226–241 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Loidreau, P.: Étude et optimisation de cryptosystèmes à clé publique fondés sur la théorie des codes correcteurs. Ph.d. dissertation, École Polytechnique, Paris, France (May 2001)Google Scholar
  14. 14.
    Gadouleau, M., Yan, Z.: Packing and covering properties of cdcs and subspace codes. IEEE Trans. on Inform. Theory (2008) (Submitted)Google Scholar
  15. 15.
    Delsarte, P.: An algebraic approach to association schemes of coding theory. Philips J. Res., 1–97 (1973)Google Scholar
  16. 16.
    Frankl, P., Wilson, R.: The Erdös-Ko-Rado Theorem for Vector Spaces. Journal of Combinatorial Theory 43, 228–236 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Etzion, T., Vardy, A.: Error-correcting codes in projective space. In: Proc. IEEE Int. Symp. Information Theory, Toronto, Canada, July 6-11, pp. 871–875 (2008)Google Scholar
  18. 18.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  19. 19.
    Ahlswede, R., Aydinian, H.: On error control for random network coding. In: IEEE Workshop on Network Coding, Theory and Applications (2009)Google Scholar
  20. 20.
    Khaleghi, A., Kschischang, F.R.: Projective space codes for the injection metric. In: Proc. 11th Canadian Workshop Inform. Theory, Ottawa, May 13-15, pp. 9–12 (2009)Google Scholar
  21. 21.
    Tolhuizen, L.M.G.M.: The generalized Gilbert-Varshamov bound is implied by Túran’s theorem. IEEE Trans. Inf. Theory 43(5), 1605–1606 (1997)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Silva, D.: Error Control for Network Coding. PhD thesis, University of Toronto, Toronto, Canada (2009)Google Scholar
  23. 23.
    Skachek, V.: Recursive code construction for random networks. Submitted for Publication (2008)Google Scholar
  24. 24.
    Manganiello, F., Gorla, E., Rosenthal, J.: Spread codes and spread decoding in network coding. In: Proc. IEEE Int. Symp. Information Theory, Toronto, Canada, July 6-11, pp. 881–885 (2008)Google Scholar
  25. 25.
    Gabidulin, E., Bossert, M.: Codes for network coding. In: Proc. IEEE Int. Symp. Information Theory, Toronto, Canada, July 6-11, pp. 867–870 (2008)Google Scholar
  26. 26.
    Etzion, T., Silberstein, N.: Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55(7), 2909–2919 (2009)CrossRefGoogle Scholar
  27. 27.
    Khaleghi, A.: Projective space codes for the injection metric. Master’s thesis, University of Toronto, Toronto, Canada (2009)Google Scholar
  28. 28.
    Kohnert, A., Kurz, S.: Construction of large constant dimension codes with a prescribed minimum distance. Mathematical Methods in Computer Science: Essays in Memory of Thomas Beth, 31–42 (2008)Google Scholar
  29. 29.
    Silva, D., Kschischang, F.R.: Fast encoding and decoding of Gabidulin codes. In: Proc. IEEE Int. Symp. Information Theory, Seoul, Korea, June 28-July 3, pp. 2858–2862 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations