Skip to main content

Mesothelioma and Analysis of Tissue Fiber Content

  • Chapter
  • First Online:
Malignant Mesothelioma

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 189))

Abstract

The strong relationship between mesothelioma and asbestos exposure is well established. The analysis of lung asbestos burden by light and electron microscopy assisted to understand the increased incidence of mesothelioma in asbestos mining and consuming nations.

The data on the occupational exposure to asbestos are important information for the purpose of compensation of occupational disease No. 4105 (asbestos-associated mesothelioma) in Germany.

However, in many cases the patients have forgotten conditions of asbestos exposure or had no knowledge about the used materials with components of asbestos. Mineral fiber analysis can provide valuable information for the research of asbestos-associated diseases and for the assessment of exposure. Because of the variability of asbestos exposure and long latency periods, the analysis of asbestos lung content is a relevant method for identification of asbestos-associated diseases. Also, sources of secondary exposure, so called “bystander exposition” or environmental exposure can be examined by mineral fiber analysis.

Household contacts to asbestos are known for ten patients (1987–2009) in the German mesothelioma register; these patients lived together with family members working in the asbestos manufacturing industry.

Analysis of lung tissue for asbestos burden offers information on the past exposure. The predominant fiber-type identified by electron microscopy in patients with mesothelioma is amphibole asbestos (crocidolite or amosite). Latency times (mean 42.5 years) and mean age at the time of diagnose in patients with mesothelioma are increasing (65.5 years). The decrease of median asbestos burden of the lung in mesothelioma patients results in disease manifestation at a higher age.

Lung dust analyses are a relevant method for the determination of causation in mesothelioma. Analysis of asbestos burden of the lung and of fiber type provides insights into the pathogenesis of malignant mesothelioma. The most important causal factor for the development of mesothelioma is still asbestos exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albin M, Johansson L, Poley F, Jakobsson K, Attewell R, Mitha R (1990) Mineral fibres, fibrosis and asbestos bodies in lung tissue from deceased asbestos cement workers. Br J Ind Med 47:767–74

    PubMed  CAS  Google Scholar 

  2. Albracht G, Schwerdtfeger O (1991) Herausforderung Asbest. Universum Verlag GmbH KG, Wiesbaden

    Google Scholar 

  3. Amin KM, Litzky LA, Smythe WR (1995) Wilms tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol 246:344–56

    Google Scholar 

  4. Antman KH, Ruxer RL, Aisner J, Vawter G (1984) Mesothelioma following Wilms’ tumor in childhood. Cancer 54:367–69

    Article  PubMed  CAS  Google Scholar 

  5. Aoe K, Hiraki A, Murakami T, Toyooka S, Shivapurkar N, Gazdar A, Sueoka N, Taguchi K, Kamei T, Takeyama H, Sugi K, Kishimoto T (2006) Infrequent existence of simian virus 40 large T antigen DNA in malignant mesothelioma in Japan. Cancer Sci 97:292–295

    Article  PubMed  CAS  Google Scholar 

  6. Arendt M, Bauer H, Blome H (2007) BK-Report 1/2007 – FaserjahreBerufsgenossenschaftliche Hinweise zur Ermittlung der kumulativen Asbestfaserstaub-Dosis am Arbeitsplatz (Faserjahre) und Bearbeitungshinweise zur Berufskrankheit Nr. 4104 “Lungenkrebs oder Kehlkopfkrebs”. In: Deutsche Gesetzliche Unfallversicherung (DGUV), ed. Sankt Augustin, Germany 2007

    Google Scholar 

  7. Ashcroft T, Heppleston A (1973) The optical and electron microscopy determination of pulmonary asbestos fibre concentration and its relation to the human pathological reaction. J Clin Pathol 26:224–234

    Article  PubMed  CAS  Google Scholar 

  8. Attanoos R, Gibbs AR (1998) Peritoneal Mesothelioma: clinicopathological analysis of 227 cases from the U.K. mesothelioma register. Arch Anat Cyt Path Clin Exp Path 46:376

    Google Scholar 

  9. Bang K, Mazurek J, Storey E, Attfiel M, Schleiff P, Wood J (2009) Malignant mesothelioma mortality – United states 1999–2005. MMWR Morb Wkly Rep 58:393–396

    Google Scholar 

  10. Baris YI, Simonato L, Artvinli M (1987) Epidemiological and environmental evidence of the health effects of exposure to erionite fibers: a four study in the Cappadocian region of Turkey. Int J Cancer 39:10–17

    Article  PubMed  CAS  Google Scholar 

  11. Berman D, Crump K (2008) A meta analysis of asbestos related cancer risk that addressed fiber size and mineral type. Crit Rev Toxicol 38:49–73

    Article  PubMed  CAS  Google Scholar 

  12. Bernstein D, Donaldson K, Decker U, Gaering S, Kunzendorf P, Chevallier J, Holm S (2005) A biopersistence study following exposure to chrysotile asbestos alone or in combination with fine particles. Inhal Toxicol 20:1009–1028

    Article  CAS  Google Scholar 

  13. Bernstein D, Hoskins J (2006) The health effects of chrysile: current perspective based upon recent data. Regul Toxicol Pharmacol 45:252–264

    Article  PubMed  CAS  Google Scholar 

  14. Bernstein D, Rogers R, Sepulveda R, Donaldson K, Schuler D, Gaering S, Kunzendorf P, Chevalier J, Holm S. (2010) The pathological response and fate in the lung and pleura of chrysotile in combination with fine particles compared to amosite asbestos following short term inhalation exposure. interim results. Inhal. Toxicol 22:937–962

    Google Scholar 

  15. BIA-Arbeitsmappe (2000–2001) Bestimmung von anorganischen Fasern im menschlichen Lungengewebe 26. Lfg 26. III/01 und 24. Lfg. III/00 TEM und REM Methode

    Google Scholar 

  16. Bianchi C, Brollo A, Ramani L, Bianchi T (2000) Malignant mesothelioma in Europe. Int J Med Biol Environ 28:103–107

    Google Scholar 

  17. Bianchi C, Girelli L, Grandi G, Brillo A, Ramani L, Zuch C (1997) Latency periods in asbestos related mesothelioma of the pleura. Eur J Cancer Prev 6:162–6

    PubMed  CAS  Google Scholar 

  18. Boutin C, Dumortiers R, Rey F, Viallat J, DeVuyst P (1996) Black spots concentrate oncogenic asbestos fibers in the parietal pleura. Am J Respir Crit Care Med 153:444–449

    PubMed  CAS  Google Scholar 

  19. Brockmann M (1991) Asbestassoziierte Lungen- und Pleuraerkrankungen – pathologische Anatomie. Pneumologie 45:422–428

    PubMed  CAS  Google Scholar 

  20. Brockmann M, Fischer M, Müller K (1989) Lungenstaubanalyse bei Bronchialkarzinomen und Mesotheliomen. Atemw Lungenkrankh 6:263–65

    Google Scholar 

  21. Browne K, Smither W (1983) Asbestos related mesothelioma factors discriminating between pleural and peritoneal sites. Br J Ind Med 40:145–152

    PubMed  CAS  Google Scholar 

  22. Carbone M (1999) New molecular and epidemiological issues in mesothelioma Role of SV40. J Cell Physiol 180:167–72, Review

    Article  PubMed  CAS  Google Scholar 

  23. Cavazza A, Travis LB, Travis WD, Wolfe JT, Foo ML, Gillespie DJ, Weidner N, Colby TV (1996) Post irradiation malignant mesothelioma. Cancer 77:1379–1385

    Article  PubMed  CAS  Google Scholar 

  24. Churg A (1982) Fiber counting and analysis in the diagnosis of asbestos related diseases. Hum Pathol 13:381–392

    Article  PubMed  CAS  Google Scholar 

  25. Churg A (1988) Chrysotile, tremolite and malignant mesothelioma in man. Chest 93:621–28

    Article  PubMed  CAS  Google Scholar 

  26. Churg A (1994) Deposition and clearance of chrysotile asbestos. Ann Occup Hyg 38:625–633

    Article  PubMed  CAS  Google Scholar 

  27. Churg A, Warnock M (1981) Asbestos and other ferruginous bodies. Am J Pathol 102:447–456

    PubMed  CAS  Google Scholar 

  28. Churg A, Warnock M, Green N (1977) Analysis of the cores ferruginous (asbestos) bodies from the general population. I. Patients with and without lung cancer. Lab Invest 37:280–286

    PubMed  CAS  Google Scholar 

  29. Churg A, Warnock M, Green N (1979) Analysis of the core of ferruginous bodies from the general population. II. True asbestos bodies and pseudoasbestos bodies. Lab Invest 40:31–38

    PubMed  CAS  Google Scholar 

  30. Churg A, Wiggs H (1984) Fiber size and number of amphibole asbestos induced mesothelioma. Am J Pathol 115:437–442

    PubMed  CAS  Google Scholar 

  31. Churg A, Wiggs B, DePaoli L, Kampe B, Stevens B (1984) Lung asbestos content in chrysotile workers with mesothelioma. Am Rev Respir Dis 130:1042–45

    PubMed  CAS  Google Scholar 

  32. Cooke W, Hill C (1927) Pulmonary asbestosis. J R Microsc Soc 47:232

    Article  Google Scholar 

  33. Craighead J (1987) Current pathogenetic concepts of diffuse malignant mesothelioma. Hum Pathol 18:544–557

    Article  PubMed  CAS  Google Scholar 

  34. Crouch E, Churg A (1984) Ferruginous bodies and the histologic evaluation of dust exposure. Am J Surg Pathol 8:109–116

    Article  PubMed  CAS  Google Scholar 

  35. Davis J, Beckett S, Bolton R, Collings P, Middleton A (1978) Mass and number of fibers in the pathogenesis of asbestos related lung disease in rats. Br J Cancer 37:673–688

    Article  PubMed  CAS  Google Scholar 

  36. Dawson A, Gibbs A, Pooley F, Griffiths D, Hoy J (1993) Malignant mesothelioma in women. Thorax 48:269–74

    Article  PubMed  CAS  Google Scholar 

  37. DeKlerk N, Musk A, Williams V, Filion P, Whitaker D, Shilkin K (1996) Comparison of measures of exposure to asbestos in former crocidolite workers from Wittenoom Gorge, W. Australia. Am J Ind Med 30:579–587

    Article  CAS  Google Scholar 

  38. DeVuyst P, Karjalainen A, Dumortier P, Pairon J, Monso E, Brochard P, Teschler H, Tossavainen A, Gibbs A (1998) Guidelines for mineral fibre analysis in biological samples: report of the ERS Working group. Eur Resp J 11:1416–1426

    Article  CAS  Google Scholar 

  39. DGUV (2008) Occupational cancer statistics www://dguv.de/inhalt/zahlen/bk/index.jsp

  40. Dodson F, Aktinson M (2006) Measurements of asbestos burden in tissues. Ann NY Acad Sci 1076:281–291

    Article  PubMed  Google Scholar 

  41. Dodson R, O’Sullivan F, Corn C (1996) Relationships between ferruginous bodies and uncoated asbestos fibers in lung tissue. Arch Environ Health 51:462–6

    Article  PubMed  CAS  Google Scholar 

  42. Dodson R, O’Sullivan M, Corn M, McLarty J, Hammar S (1997) Analysis of asbestos fiber burden in lung tissue from mesothelioma patients. Ultrastruct Pathol 21:321–36

    Article  PubMed  CAS  Google Scholar 

  43. Dodson R, Williams M, Corn C, Brollo A, Bianchi C (1990) Asbestos content of lung tissue, lymph nodes and pleural plaques from former shipyard workers. Am Rev Respir Dis 142:843–847

    PubMed  CAS  Google Scholar 

  44. Dodson R, Williams M, Huang J, Bruce J (1999) Tissue burden of asbestos in non-occupationally exposed individuals from east Texas. Am J Ind Med 35:281–286

    Article  PubMed  CAS  Google Scholar 

  45. Edge J, Choudhury S (1978) Malignant mesothelioma of the pleura in Barrow in Furness. Thorax 33:26–30

    Article  PubMed  CAS  Google Scholar 

  46. Eitner F, Otto H (1984) Zur Dignität von Asbestkörperzählungen im Lungengewebe. Arbeitsmed Sozialmed Präventivmed 19:1–5

    Google Scholar 

  47. Elmes P (1994) Mesothelioma and chrysotile. Ann Occup Hyg 38:547–553

    Article  PubMed  CAS  Google Scholar 

  48. Ewers U, Fischer M, Müller K, Seemann J, Theile A, Welge P, Wittig P, Wittsiepe J (1999) Multiple inhalative exposure of the human lung to carcinogens, metalloids and asbestos fibers. BAMAS FP 1947–1469

    Google Scholar 

  49. Frank A, Dodson R, Williams M (1998) Carcinogenic implications of the lack of tremolite in UICC reference chrysotile. Am J Ind Med 34:314–17

    Article  PubMed  CAS  Google Scholar 

  50. Friedrichs K, Brockmann M, Fischer M, Wick G (1992) Electron microscopy analysis of mineral fibers in human lung tissue. Am J Ind Med 22(49):49–58

    Article  PubMed  CAS  Google Scholar 

  51. Friedrichs K, Dykers A, Otto H (1995) Material stability of asbestos fibers in human lung tissue [Materialstabilität von Asbestfasern im Lungengewebe]. Arbeits Sozial Umweltm 30:18–20

    Google Scholar 

  52. Friedrichs KH, Otto H, Fischer M (1992) Gesichtspunkte zur Faseranalyse in Lungenstäuben. Arbeits Soz Prävent 27:228–32

    Google Scholar 

  53. Gaudichet A, Janson X, Monchaux G (1988) Assessment by analytical microscopy of the total lung fibre burden in mesothelioma patients matched with four other pathological series. Ann Occup Hyg 32(Suppl):213–23

    Article  Google Scholar 

  54. Gibbs G (1970) Qualitative aspects of dust exposure in the Quebec asbestos mining and milling industry. In: Walton WH (ed) Inhalated particles 3, Proceeding of the British occupational hygiene society symposium, London, 1970, pp 783–799

    Google Scholar 

  55. Gibbs A (1990) Role of asbestos and other fibres in the development of diffuse malignant mesothelioma. Thorax 45:649–54

    Article  PubMed  CAS  Google Scholar 

  56. Gibbs A, Attanonous R (2000) Examination of lung specimens. J Clin Pathol 53:507–12

    Article  PubMed  CAS  Google Scholar 

  57. Gibbs A, Pooley F (1996) Analysis and interpretation of inorganic mineral fibers in lung tissue. Thorax 51:327–34

    Article  PubMed  CAS  Google Scholar 

  58. Gibbs A, Stephens M, Griffiths D, Blight B, Pooley F (1991) Fibre distribution in the lungs and pleura of subjects with asbestos related diffuse pleural fibrosis. Am Rev Respir Dis 142:843–847

    Google Scholar 

  59. Glyseth B, Baumann R, Overaae L (1982) Analysis of fibers in human lung tissue. Br J Ind Med 39:191–195

    Google Scholar 

  60. Gold C (1971) Asbestos in tumours. J Clin Pathol 24:481

    Article  PubMed  CAS  Google Scholar 

  61. Gross P, Trevillle R, Haller M (1969) Pulmonary ferruginous bodies (asbestos) bodies in city dwellers a study of their central fiber. Arch Environ Health 19:186–191

    PubMed  CAS  Google Scholar 

  62. Hammar S, Roggli V, Ovry T, Moffat E (1998) Malignant mesothelioma in women. Lung Cancer 18:38

    Google Scholar 

  63. Hein M, Stayner L, Lehmann E, Dement J (2007) Follow up of chrysotile textile workers: cohort mortality and exposure response. Occup Environ Med 64:616–625

    Article  PubMed  CAS  Google Scholar 

  64. Hodgson J, Darnton A (2000) The quantitative risk of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg 44:565–601

    PubMed  CAS  Google Scholar 

  65. Hoggson J, McElvenny D, Darnton A, Price M, Peto J (2005) The expected burden of mesothelioma mortality in Great Britain from 2002 to 2050. Br J Cancer 92:587–593

    Google Scholar 

  66. Howel D, Gibbs A, Arblaster L, Swinburne L, Schweiger M, Renvoize E, Hatton P, Pooley F (1999) Mineral fibre analysis and routes of exposure to asbestos in the development of mesothelioma in an English region. Occup Environ Med 56:51–58

    Article  PubMed  CAS  Google Scholar 

  67. Illgren E, Browne K (1991) Asbestos related mesothelioma: evidence for a threshold in animals and human. Regul Toxicol Pharmacol 13:116–32

    Article  Google Scholar 

  68. Karyalainen A, Nurminen M, Vanhala E, Vainio H, Antilla S (1996) Pulmonary asbestos bodies and asbestos fibres as indicators of exposure. Scand J Work Environ Health 22:34–38

    Article  Google Scholar 

  69. Kayser K, Becker C, Seeberg N, Gabius HJ (1999) Quantitation of asbestos and asbestos like fibres in human lung tissue by hot and wet ashing and the significance of their presence for survival of lung carcinoma and mesothelioma patients. Lung Cancer 24:89–98

    Article  PubMed  CAS  Google Scholar 

  70. Kohyama N, Hiroko K, Kunihiko Y, Yoshizumi S (1992) Evaluation of low level asbestos exposure by transbronchial lung biopsy with analytical electron microscopy. J Electron Microsc 42:315–327

    Google Scholar 

  71. Kohyama N, Suzuki Y (1991) Analysis of asbestos fibres in lung parenchyma, pleural plaques and mesothelioma tissues of north American insulation workers. Ann NY Acad Sci 643:27–52

    Article  PubMed  CAS  Google Scholar 

  72. Landrigan P, Nicholson W, Suzuki Y, Ladou J (1999) The hazard of chrysotile asbestos: a critical review. Ind Health 37:271–280

    Article  PubMed  CAS  Google Scholar 

  73. Leigh J, Davidson P, Hendrie L, Berry D (2002) Malignant mesothelioma in Australia, 1945–2000. Am J Ind Med 41:188–201

    Article  PubMed  Google Scholar 

  74. Leigh J, Rogers A, Ferguson D, Mulder H, Ackad M, Thompson R (1991) Lung asbestos fiber content and mesothelioma cell type site and survival. Cancer 68:135–141

    Article  PubMed  CAS  Google Scholar 

  75. Lidell D (1994) Cancer mortality in chrysotile mining and milling: exposure-response. Ann Occup Hyg 38:519–523

    Article  Google Scholar 

  76. Lin R, Takabashi K, Karjalainen A, Hoshuyama T, Wilson D, Kameda T, Chan C, Wen C, Furuya S, Higashi T, Chien L, Ohtaki M (2007) Ecological association between asbestos related diseases and historical asbestos consumption: an international analysis. Lancet 369:844–849

    Article  PubMed  CAS  Google Scholar 

  77. Livneh A, Langevitz P, Pras M (1999) Pulmonary associations in familial Mediterranean fever. Curr Opin Pulm Med 5:326–31

    Article  PubMed  CAS  Google Scholar 

  78. Marchand F (1906) Über eigentümliche Pigmentkristalle in den Lungen. Verhand Deutsch Pathos Gesell 10:223–228

    Google Scholar 

  79. Marinaccio A, Binazzi A, Cauzillo G, Cavone D, DeZottti R, Ferrante P, Gennaro V, Gorini G, Menegozzo M, Mensi C, Merler E, Mirabelli D, Montanaro F, Musti M, Pannelli F, Romanelli A, Scarselli A, Tumino R (2007) Analysis of latency time and its determinants in asbestos related malignant mesothelioma cases of the Italian register. Eur J Cancer 43(18):2722–2728

    Article  PubMed  CAS  Google Scholar 

  80. Maurer R, Egloff B (1975) Malignant peritoneal mesothelioma after cholangiography with thorotrast. Cancer 36:1381–85

    Article  PubMed  CAS  Google Scholar 

  81. McDonald S (1927) Histology of pulmonary asbestosis. Br Med J 3(2):1025

    Article  Google Scholar 

  82. McDonald J (1998) Mineral fibre persistence and carcinogenicity. Ind Health 36:372–5

    Article  PubMed  CAS  Google Scholar 

  83. McDonald J, Amstrong B, Case B (1989) Mesothelioma and asbestos fiber type: evidence from lung tissue analyses. Cancer 63:154–1547

    Article  Google Scholar 

  84. McDonald J, McDonald A (1996) The epidemiology of mesothelioma in historical context. Eur Respir J 9:1932–42

    Article  PubMed  CAS  Google Scholar 

  85. McDonald J, McDonald A (1997) Chrysotile, tremolite and carcinogenicity. Ann Occup Hyg 6:699–705

    Google Scholar 

  86. McDonald J, McDonald A, Hughes JM (1999) Chrysotile, tremolite and fibrogenicity. Ann Occup Hyg 43:439–442

    PubMed  CAS  Google Scholar 

  87. McDonald AD, McDonald JC, Pooley FC (1982) Mineral fiber content of lung in mesothelioma tumors in North America. Ann Occup Hyg 26:417–422

    Article  PubMed  CAS  Google Scholar 

  88. McElvenny D, Darnton A, Price M, Hodgson J (2005) Mesothelioma mortality in Great Britain from 1968 to 2001. Occup Med 55:79–87

    Article  Google Scholar 

  89. Mirabelli D, Calisti R, Barone-Adesi F, Foriero E, Merletti F, Magnani C (2008) Excess of mesothelioma after exposure to chrysotile in Balangero, Italy. Occup Environ Med 65:815–819

    Article  PubMed  CAS  Google Scholar 

  90. Morgan A, Holmes A (1979) Concentrations and dimensions of coated and uncoated asbestos fibers in the human lung. Br J Ind Med 37:25–32

    Google Scholar 

  91. Morgan A, Holmes A (1983) Distribution and characteristics of amphibole asbestos fibres, measured with the light microscope, in the left lung of an insulations worker. Br J Ind Med 40:45–50

    PubMed  CAS  Google Scholar 

  92. Morgan A, Holmes A (1984) The distribution and characteristics of asbestos fibers in the lungs Finnish anthophyllite mine workers. Environ Res 33:62–75

    Article  PubMed  CAS  Google Scholar 

  93. Moulin E, Yourassowsky N, Dumortier P, DeVuyst J, Yernault J (1988) Electron microscopy analysis of asbestos body cores from the Belgian urban population. Eur Respir J 1:818–822

    PubMed  CAS  Google Scholar 

  94. Neumann V, Günther S, Müller K, Fischer M (2001) Malignant mesothelioma – German mesothelioma register 1987 to 1999. Int Arch Occup Environ Health 74:383–395

    Article  PubMed  CAS  Google Scholar 

  95. Neumann V, Kraus T, Fischer M, Löseke S, Tannapfel A (2009) Relevance of Pathological Examinations and Lung Dust Analyses in the Context of Asbestos-Associated Lung Cancer-No. 4104 of the List of occupational diseases in Germany. Pneumologie 63:588–593

    Article  PubMed  CAS  Google Scholar 

  96. Neumann V, Müller K, Fischer M (1999) Peritoneal mesothelioma – Frequencies and aetiology [Peritoneale Mesotheliome – Häufigkeiten und Ätiologie]. Pathologe 20:169–176

    Article  PubMed  CAS  Google Scholar 

  97. Newhouse M, Berry G, Wagner J (1985) Mortality of workers in east London 1933-80. Br J Ind Med 42:4–11

    PubMed  CAS  Google Scholar 

  98. Ophus E, Mowe G, Osen K, Glyseth B (1980) Scanning electron microscopy and x-ray microanalysis of mineral deposits in lungs of a patient with pleural mesothelioma. Br J Ind Med 37:375–381

    PubMed  CAS  Google Scholar 

  99. Osman E, Hasan B, Meral U, Ercan A, Mehmet T, Nazan B, Ayhan Ö, Erhan E, Öner D (2007) Recent discovery of an old diseases. Malignant pleural mesothelioma in a village in south east turkey. Respirology 12:448–451

    Article  PubMed  Google Scholar 

  100. Pesch B, Taeger D, Johnen G, Gross I, Weber D, Gube M, Müller-Lux A, Heinze E, Wiethege T, Neumann V, Tannapfel A, Raithel H, Brünning T, Kraus T (2010) Cancer mortality in a surveillance cohort of German males formerly exposed to asbestos. Int J Hyg Environ Health 213:44–51

    Article  PubMed  Google Scholar 

  101. Pierce J, McKinley M, Pausenbach D, Finley B (2008) An evaluation of reported no effect chrysotile asbestos exposure for lung cancer and mesothelioma. Crit Rev Toxicol 38:191–214

    Article  PubMed  CAS  Google Scholar 

  102. Pooley F (1976) An examination of the fibrous mineral content of asbestos lung tissue from the Canadian chrysotile mining industry. Environ Res 12:281–298

    Article  PubMed  CAS  Google Scholar 

  103. Pooley F, Ranson D (1986) Comparison of the results of asbestos fibers dust counts in lung tissue by analytical electron microscopy and light microscopy. J Clin Pathol 39:313–317

    Article  PubMed  CAS  Google Scholar 

  104. Price B, Ware A (2004) Mesothelioma trends in the United states: an update based on surveillance, epidemiology and end results program data for 1973 through 2003. Am J Epidemiol 159:107–12

    Article  PubMed  Google Scholar 

  105. Rees D, Myers J, Goodmann K, Fourie E, Blignaut C, Chapman R, Bachmann M (1999) Case control study of mesothelioma in south Africa. Am Ind Med 35:213–22

    Article  CAS  Google Scholar 

  106. Ridell RH, Goodman MJ, Moossa AR (1981) Peritoneal malignant mesothelioma in a patient with recurrent peritonitis. Cancer 48:134–139

    Article  Google Scholar 

  107. Robinson B, Lake R (2005) Advances in malignant mesothelioma. N Engl J Med 253:1591–603

    Article  Google Scholar 

  108. Rödelsperger K, Woitowitz H, Brückel B, Arhelger R, Pohlabeln H, Jöckel K (1999) Dose-response relationship between amphibole fibre lung burden and mesothelioma. Cancer Detect Prev 23:183–93

    Article  PubMed  Google Scholar 

  109. Rogers A (1984) Determination of mineral fiber in human lung tissue by light microscopy and transmission electron microscopy. Ann Occup Hyg 1:1–12

    Article  Google Scholar 

  110. Rogers A, Leigh J, Berry G, Fergusond A, Mulder H, Ackad M (1991) Relationship between lung asbestos fiber type and concentration and relative risk of mesothelioma. Cancer 67:1912–20

    Article  PubMed  CAS  Google Scholar 

  111. Roggli V (1982) Pulmonary asbestos body counts and electron probe analysis of asbestos body cores in patients with mesothelioma. A study of 25 cases. Cancer 50:2423–2432

    Article  PubMed  CAS  Google Scholar 

  112. Roggli V (1992) Quantitative and analytical studies in the diagnosis of mesothelioma. Semin Diagn Pathol 9:162–168

    PubMed  CAS  Google Scholar 

  113. Roggli V (2006) The role of analytical SEM in the determination of causation in malignant mesothelioma. Ultrastruct Pathol 30:31–35

    Article  PubMed  Google Scholar 

  114. Roggli V, Oury T, Sporn T (2004) Pathology of asbestos associated diseases, 2nd edn. Springer, New York

    Book  Google Scholar 

  115. Roggli V, Pratt P, Brody A (1986) Asbestos content in lung tissue with asbestos associated diseases: a study of 110 cases. Br J Ind Med 43:18–19

    PubMed  CAS  Google Scholar 

  116. Roggli V, Pratt P, Brody A (1993) Asbestos fiber type in malignant mesothelioma: an analytical electron microscopy study of 94 cases. Ultrastruct Pathol Am J Ind Med 23:605–614

    Article  CAS  Google Scholar 

  117. Roggli V, Sanders L (2000) Asbestos content of the lung tissue and carcinoma of the lung: a clinicopathologic correlation and mineral fiber analysis of 234 cases. Ann Occup Hyg 44:109–117

    PubMed  CAS  Google Scholar 

  118. Roggli V, Vollmer R (2008) Twenty five years of fiber analysis: what have we learned? Hum Pathol 39:307–15

    Article  PubMed  CAS  Google Scholar 

  119. Roushdy-Hammady I, Siegel J, Emri S, Testa J, Carbone M (2001) Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet 357:444–455

    Article  PubMed  CAS  Google Scholar 

  120. Sakai K, Hisanagna N, Huang J, Chibata E, Ono Y, Aoki T, Tarando T, Yokoi T, Takeuchi Y (1994) Asbestos and non asbestos fiber content in lung tissue of Japanese patients with malignant mesothelioma. Cancer 73:1825–1835

    Article  PubMed  CAS  Google Scholar 

  121. Sebastien P, Fondimare A, Bignon J, Monchaux G, Desbordes J, Bonnaud G (1977) Topographic distribution of asbestos fibers in human lung in relation to an nonoccupational exposure. In: Walton W, McGovern E (eds) Inhaled particles IV. Pergamon Press, Oxford, pp 435–444

    Google Scholar 

  122. Selikoff I (1986) Asbestos associated diseases. In: Rosenau M (ed) Public Health and preventive medicine, 11th edn. Appleton, Century Crofts, New York, pp 568–598

    Google Scholar 

  123. Selikoff I, Lee D (1978) Asbestos and disease. Academic, New York

    Google Scholar 

  124. Smith A, Wright C (1996) Chrysotile asbestos is the main cause of pleural mesothelioma. Am J Ind Med 30:252–66

    Article  PubMed  CAS  Google Scholar 

  125. Stayner L, Kuempel E, Gilbert S, Hein M, Dement J (2008) An epidemiological study of asbestos fibre dimension in determining respiratory disease risk in exposed workers. Occup Environ Med 65:613–19

    Article  PubMed  CAS  Google Scholar 

  126. Stettler L, Sharpnack D, Krieg E (2008) Chronic Inhalation of short asbestos: lung fiber burdens and histopathological for monkeys maintained for 11, 5 years after exposure. Inhal Toxicol 20:63–73

    Article  PubMed  CAS  Google Scholar 

  127. Survana K, Layton C (2006) What is a significant lung asbestos fibre result? Histopathology 48:200–19

    Article  Google Scholar 

  128. Suzuki Y, Yuen S (2001) Asbestos tissue burden study in human malignant mesothelioma. Ind Health 39:150–160

    Article  PubMed  CAS  Google Scholar 

  129. Tomatis L, Susanna C, Francessco C, Merler E, Mollo F, Ricci P, Silvestri S, Vineis P, Teracini B (2007) The role of asbestos fiber dimensions in the prevention of mesothelioma. Int J Occup Environ Health 13:64–69

    PubMed  CAS  Google Scholar 

  130. Vianna NJ (1978) Non occupational exposure to asbestos and malignant mesothelioma in females. Lancet 1(8073):1061–1063

    Article  PubMed  CAS  Google Scholar 

  131. Wagner J, Berry G, Pooley F (1982) Mesothelioma and asbestos type in asbestos textile workers: a study of lung content. Br Med J 285:603–6

    Article  CAS  Google Scholar 

  132. Wagner J, Berry G, Skidmore J, Timbrell V (1974) The effects of the inhalation of asbestos in rats. Br J Cancer 29:252–269

    Article  PubMed  CAS  Google Scholar 

  133. Wagner JC, Sleggs CA, Marchand P (1960) Diffuse pleural mesothelioma and asbestos exposure in the north western cape province. Br J Ind Med 17:260–71

    PubMed  CAS  Google Scholar 

  134. Woitowitz HJ, Hillerdal G, Calazos A (1994) Risiko und Einflussfaktoren des diffusen malignen Mesothelioms (DMM). Research Report series “Arbeit und Technik”, Fb 698. Wirtschaftsverlag NW. Federal Institute for occupational Safety and Health, Bremerhaven

    Google Scholar 

  135. Yates D, Corrin B, Stidolph P, Browne K (1997) Malignant mesothelioma in south east England: clinicopathological experience of 272 cases. Thorax 52:507–512

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neumann, V., Löseke, S., Tannapfel, A. (2011). Mesothelioma and Analysis of Tissue Fiber Content. In: Tannapfel, A. (eds) Malignant Mesothelioma. Recent Results in Cancer Research, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10862-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10862-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10861-7

  • Online ISBN: 978-3-642-10862-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics