Skip to main content

Envy, Multi Envy, and Revenue Maximization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5929))

Abstract

We study the envy free pricing problem faced by a seller who wishes to maximize revenue by setting prices for bundles of items. If there is an unlimited supply of items and agents are single minded then we show that finding the revenue maximizing envy free allocation/pricing can be solved in polynomial time by reducing it to an instance of weighted independent set on a perfect graph.

We define an allocation/pricing as multi envy free if no agent wishes to replace her allocation with the union of the allocations of some set of other agents and her price with the sum of their prices. We show that it is coNP-hard to decide if a given allocation/pricing is multi envy free. We also show that revenue maximization multi envy free allocation/pricing is APX hard.

Furthermore, we give efficient algorithms and hardness results for various variants of the highway problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balcan, M.-F., Blum, A.: Approximation algorithms and online mechanisms for item pricing. In: EC 2006: Proceedings of the 7th ACM conference on Electronic commerce, pp. 29–35 (2006)

    Google Scholar 

  2. Balcan, M.-F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: EC 2008: Proceedings of the 9th ACM conference on Electronic commerce, pp. 50–59. ACM, New York (2008)

    Chapter  Google Scholar 

  3. Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal envy-free pricing with metric substitutability. In: EC 2008: Proceedings of the 9th ACM conference on Electronic commerce, pp. 60–69. ACM, New York (2008)

    Chapter  Google Scholar 

  4. Demaine, E.D., Hajiaghayi, M.T., Feige, U., Salavatipour, M.R.: Combination can be hard: approximability of the unique coverage problem. In: SODA 2006: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 162–171. ACM, New York (2006)

    Chapter  Google Scholar 

  5. Fiat, A., Wingarten, A.: Envy, multi envy, and revenue maximization (2009), http://arxiv.org/abs/0909.4569

  6. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing envy-free pricing. In: SODA 2005: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1164–1173 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiat, A., Wingarten, A. (2009). Envy, Multi Envy, and Revenue Maximization. In: Leonardi, S. (eds) Internet and Network Economics. WINE 2009. Lecture Notes in Computer Science, vol 5929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10841-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10841-9_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10840-2

  • Online ISBN: 978-3-642-10841-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics