The Impact of Social Ignorance on Weighted Congestion Games

  • Dimitris Fotakis
  • Vasilis Gkatzelis
  • Alexis C. Kaporis
  • Paul G. Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5929)

Abstract

We consider weighted linear congestion games, and investigate how social ignorance, namely lack of information about the presence of some players, affects the inefficiency of pure Nash equilibria (PNE) and the convergence rate of the ε-Nash dynamics. To this end, we adopt the model of graphical linear congestion games with weighted players, where the individual cost and the strategy selection of each player only depends on his neighboring players in the social graph. We show that such games admit a potential function, and thus a PNE. Our main result is that the impact of social ignorance on the Price of Anarchy (PoA) and the Price of Stability (PoS) is naturally quantified by the independence numberα(G) of the social graph G. In particular, we show that the PoA grows roughly as α(G)(α(G) + 2), which is essentially tight as long as α(G) does not exceed half the number of players, and that the PoS lies between α(G) and 2α(G). Moreover, we show that the ε-Nash dynamics reaches an α(G)(α(G) + 2)-approximate configuration in polynomial time that does not directly depend on the social graph. For unweighted graphical linear games with symmetric strategies, we show that the ε-Nash dynamics reaches an ε-approximate PNE in polynomial time that exceeds the corresponding time for symmetric linear games by a factor at most as large as the number of players.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the Impact of Combinatorial Structure on Congestion Games. Journal of the ACM 55(6) (2008)Google Scholar
  2. 2.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact Price of Anarchy for Polynomial Congestion Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 218–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The Price of Stability for Network Design with Fair Cost Allocation. In: Proc. of the 45th IEEE Symp. on Foundations of Computer Science (FOCS 2004), pp. 295–304 (2004)Google Scholar
  4. 4.
    Ashlagi, I., Krysta, P., Tennenholtz, M.: Social Context Games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 675–683. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: Proc. of the 37th ACM Symp. on Theory of Computing (STOC 2005), pp. 57–66 (2005)Google Scholar
  6. 6.
    Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V., Skopalik, A.: Fast Convergence to Nearly Optimal Solutions in Potential Games. In: Proc. of the 9th ACM Conf. on Electronic Commerce (EC 2008), pp. 264–273 (2008)Google Scholar
  7. 7.
    Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: Graphical Congestion Games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 70–81. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: When Ignorance Helps: Graphical Multicast Cost Sharing Games. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 108–119. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight Bounds for Selfish and Greedy Load Balancing. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Chien, S., Sinclair, A.: Convergece to Approximate Nash Equilibria in Congestion Games. In: Proc. of the 18th Symp. on Discrete Algorithms (SODA 2007), pp. 169–178 (2007)Google Scholar
  11. 11.
    Christodoulou, G., Koutsoupias, E.: On the Price of Anarchy and Stability of Correlated Equilibria of Linear Congestion Games. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: Proc. of the 37th ACM Symp. on Theory of Computing (STOC 2005), pp. 67–73 (2005)Google Scholar
  13. 13.
    Christodoulou, G., Koutsoupias, E., Spirakis, P.: On the Performance of Approximate Equilibria in Congestion Games. In: Proc. of the 17th European Symposium on Algorithms (ESA 2009). LNCS, vol. 5757. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In: Proc. of the 36th ACM Symp. on Theory of Computing (STOC 2004), pp. 604–612 (2004)Google Scholar
  15. 15.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. Theoretical Computer Science 348, 226–239 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gairing, M., Monien, B., Tiemann, K.: Selfish Routing with Incomplete Information. Theory of Computing Systems 42, 91–130 (2008)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Karakostas, G., Kim, T., Viglas, A., Xia, H.: Selfish Routing with Oblivious Users. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 318–327. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Koutsoupias, E., Panagopoulou, P., Spirakis, P.: Selfish Load Balancing Under Partial Knowledge. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 609–620. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Skopalik, A., Vöcking, B.: Inapproximability of Pure Nash Equilibria. In: Proc. of the 40th ACM Symp. on Theory of Computing (STOC 2008), pp. 355–364 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dimitris Fotakis
    • 1
  • Vasilis Gkatzelis
    • 2
  • Alexis C. Kaporis
    • 3
    • 4
  • Paul G. Spirakis
    • 4
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.Computer Science Department, Courant InstituteNew York UniversityUSA
  3. 3.Department of Information and Communication Systems EngineeringUniversity of the AegeanSamosGreece
  4. 4.Research Academic Computer Technology InstitutePatrasGreece

Personalised recommendations