Skip to main content
  • 6567 Accesses

Abstract

The nervous system is generally composed of two cell types, neurons and glia. During the evolution of nervous systems, both become more numerous, but the glial cells even more so than neurons. Glial cells perform a complex panel of functions ranging from key roles in development to a diversity of functions in the adult nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armulik A, Genove G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  PubMed  CAS  Google Scholar 

  2. Bacaj T, Tevlin M, Shaham S (2008) Glia are essential for sensory organ function in C. elegans. Science 322:744–747

    Article  PubMed  CAS  Google Scholar 

  3. Baumgart EV, Barbosa J, Bally-Cuif L, Götz M, Ninkovic J (2012) Stab wound injury of the zebrafish telencephalon – a model for comparative analysis of reactive gliosis. Glia 60:343–357

    Article  PubMed  Google Scholar 

  4. Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia – new concepts. Brain Res Rev 53:344–354

    Article  PubMed  CAS  Google Scholar 

  5. Chapouton P, Jagasia R, Bally-Cuif L (2007) Adult neurogenesis in non-mammalian vertebrates. Bioessays 29:745–757

    Article  PubMed  CAS  Google Scholar 

  6. Court FA, Sherman DL, Pratt T, Garry EM, Ribchester RR, Cottrell DF, Fleetwood-Walker SM, Brophy PJ (2004) Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431:191–195

    Article  PubMed  CAS  Google Scholar 

  7. Del Bigio MR (2010) Ependymal cells: biology and pathology. Acta Neuropathol 119:55–73

    Article  PubMed  Google Scholar 

  8. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008) Progeny of Olig2-expressing progenitors in the grey and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442

    Article  PubMed  CAS  Google Scholar 

  9. Dimou L, Götz M (2012) Shaping barrels: activity moves NG2 glia. Nat Neurosci 15:1176–1178

    Article  PubMed  CAS  Google Scholar 

  10. Doherty J, Logan MA, Tasdemir OE, Freeman MR (2009) Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci 29:4768–4781

    Article  PubMed  CAS  Google Scholar 

  11. Freeman MR, Doherty J (2006) Glial cell biology in Drosophila and vertebrates. Trends Neurosci 29:82–90

    Article  PubMed  CAS  Google Scholar 

  12. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  13. Grosjean Y, Grillet M, Augustin H, Ferveur JF, Featherstone DE (2008) A glial amino-acid transporter controls synapse strength and courtship in Drosophila. Nat Neurosci 11:54–61

    Article  PubMed  CAS  Google Scholar 

  14. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behaviour. Annu Rev Physiol 72:335–355

    Article  PubMed  CAS  Google Scholar 

  15. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  16. Hartline DK (2011) The evolutionary origins of glia. Glia 59:1215–1236

    Article  PubMed  Google Scholar 

  17. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    Article  PubMed  CAS  Google Scholar 

  18. Jackson FR, Haydon PG (2008) Glial cell regulation of neurotransmission and behavior in Drosophila. Neuron Glia Biol 4:11–17

    Article  PubMed  Google Scholar 

  19. Jackson FR (2011) Glial cell modulation of circadian rhythms. Glia 59:1341–1350

    Article  PubMed  Google Scholar 

  20. Kettenmann H, Ranson BR (2012) Neuroglia, 3rd edn. Oxford University Press, Oxford/New York

    Google Scholar 

  21. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  PubMed  CAS  Google Scholar 

  22. Kettenmann H, Verkratskhy A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659

    Article  PubMed  CAS  Google Scholar 

  23. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  PubMed  CAS  Google Scholar 

  24. Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A (2006) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54:394–410

    Article  PubMed  Google Scholar 

  25. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  26. Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9–22

    Article  PubMed  CAS  Google Scholar 

  27. Oikonomu G, Shaham S (2011) The glia in C. elegans. Glia 59:1253–1263

    Article  Google Scholar 

  28. Parker RJ, Auld VJ (2006) Roles of glia in Drosophila nervous system. Semin Cell Dev Biol 17:66–77

    Article  PubMed  CAS  Google Scholar 

  29. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  PubMed  CAS  Google Scholar 

  30. Petzold GC, Murphy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71:782–795

    Article  PubMed  CAS  Google Scholar 

  31. Pinto L, Götz M (2007) Radial glia heterogeneity – the source of diverse progeny in the CNS. Prog Neurobiol 83:2–23

    Article  PubMed  CAS  Google Scholar 

  32. Robel S, Berninger B, Götz M (2011) The stem cell potential from glia – lessons from reactive gliosis. Nat Rev Neurosci 12:88–104

    Article  PubMed  CAS  Google Scholar 

  33. Saab AS, Neumeyer A, Jahn HM, Cupido A, Simek AAM, Boele HJ, Scheller A, Le Meur K, Götz M, Monyer H, Sprengel R, Rubio ME, Deitmer JW, De Zeeuw CI, Kirchhoff F (2012) Bergmann glial AMPA receptors are required for fine motor coordination. Science 337:749–753

    Article  PubMed  CAS  Google Scholar 

  34. Sakry D, Karram K, Trotter J (2011) Synapses between NG2 glia and neurons. J Anat 219:2–7

    Article  PubMed  Google Scholar 

  35. Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61:24–36

    Google Scholar 

  36. Schwabe T, Bainton RJ, Fetter RD, Heberlein U, Gaul U (2005) GPCR signalling is required for blood–brain barrier formation in Drosophila. Cell 123:133–144

    Article  PubMed  CAS  Google Scholar 

  37. Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  PubMed  CAS  Google Scholar 

  38. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6:683–690

    Article  PubMed  CAS  Google Scholar 

  39. Staugaitis SM, Trapp BD (2009) NG2 positive glia in the human central nervous system. Neuron Glia Biol 29:1–10

    Google Scholar 

  40. Stork T, Bernardos R, Freeman MR (2012) Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 1:1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Götz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Götz, M. (2013). Biology and Function of Glial Cells. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_9

Download citation

Publish with us

Policies and ethics