• Jörg T. Albert
  • Martin C. Göpfert


Mechanosensation, the ability to detect – and respond to – mechanical stimulus force, is a basic property shared by virtually all organisms and cells: tension forces acting on cells, for example, can influence cell shape by acting through integrin receptors, and mechanosensitive ion channels mediate volume changes in many pro- and eukaryotic cells. Dedicated mechanosensory (or mechanoreceptor) cells and organs are found in metazoans where they serve the detection of, e.g., medium flows, body movements, gravity, touch, sound, and noxious mechanical stimuli such as pinching of the skin.


Hair Cell Hair Bundle Mechanosensory Neuron Meet Channel Mechanosensory Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329PubMedCrossRefGoogle Scholar
  2. 2.
    Machemer H, Bräucker R (1992) Gravireception and graviresponses in ciliates. Acta Protozool 31:185–214PubMedGoogle Scholar
  3. 3.
    Roberts AM (2010) The mechanics of gravitaxis in Paramecium. J Exp Biol 213:4158–4162PubMedCrossRefGoogle Scholar
  4. 4.
    Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 3:re4Google Scholar
  5. 5.
    Lumpkin EA, Marshall KL, Nelson AM (2010) The cell biology of touch. J Cell Biol 191:237–248PubMedCrossRefGoogle Scholar
  6. 6.
    Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654PubMedCrossRefGoogle Scholar
  7. 7.
    Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52PubMedCrossRefGoogle Scholar
  8. 8.
    Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103PubMedCrossRefGoogle Scholar
  9. 9.
    Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521PubMedCrossRefGoogle Scholar
  10. 10.
    Bechstedt S, Howard J (2007) Models of hair cell mechanotransduction. Curr Top Membr 59:399–424CrossRefGoogle Scholar
  11. 11.
    Nadrowski B, Göpfert MC (2009) Modeling auditory transducer dynamics. Curr Opin Otolaryngol Head Neck Surg 17:400–406PubMedCrossRefGoogle Scholar
  12. 12.
    Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772PubMedCrossRefGoogle Scholar
  13. 13.
    Gillespie PG, Cyr JL (2004) Myosin-1c, the hair cell’s adaptation motor. Annu Rev Physiol 66:521–545PubMedCrossRefGoogle Scholar
  14. 14.
    Peng AW, Salles FT, Pan B, Ricci AJ (2011) Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat Commun 1:523CrossRefGoogle Scholar
  15. 15.
    Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033PubMedCrossRefGoogle Scholar
  16. 16.
    Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82:358–370PubMedCrossRefGoogle Scholar
  17. 17.
    Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226PubMedCrossRefGoogle Scholar
  18. 18.
    Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, O’Hagan R, Chalfie M (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420:669–673PubMedCrossRefGoogle Scholar
  19. 19.
    Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042PubMedCrossRefGoogle Scholar
  20. 20.
    O’Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50PubMedCrossRefGoogle Scholar
  21. 21.
    Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725CrossRefGoogle Scholar
  22. 22.
    Brown AL, Liao ZW, Goodman MB (2008) MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J Gen Physiol 131:605–616PubMedCrossRefGoogle Scholar
  23. 23.
    Bounoutas A, O’Hagan R, Chalfie M (2009) The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation. Curr Biol 19:1362–1367PubMedCrossRefGoogle Scholar
  24. 24.
    Cueva JG, Mulholland A, Goodman MB (2007) Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J Neurosci 27:14089–14098PubMedCrossRefGoogle Scholar
  25. 25.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417PubMedCrossRefGoogle Scholar
  26. 26.
    Kernan M, Cowan D, Zuker C (1994) Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12:1195–1206PubMedCrossRefGoogle Scholar
  27. 27.
    Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234PubMedCrossRefGoogle Scholar
  28. 28.
    Delmas P, Hao JZ, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12:139–153PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461PubMedCrossRefGoogle Scholar
  30. 30.
    Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865PubMedCrossRefGoogle Scholar
  31. 31.
    Gronenberg W, Tautz J, Hölldobler B (1993) Fast trap jaws and giant neurons in the ant Odontomachus. Science 262:561–563PubMedCrossRefGoogle Scholar
  32. 32.
    Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci 9:601–612PubMedCrossRefGoogle Scholar
  33. 33.
    Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56:339–355PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Ear InstituteUniversity College LondonLondonUK
  2. 2.Department of Cellular NeurobiologyUniversity of GöttingenGöttingenGermany

Personalised recommendations