Advertisement

Attractors, Black Holes and Multiqubit Entanglement

  • Péter Lévay
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 134)

Abstract

Recently a striking correspondence has been established between quantum information theory and black hole solutions in string theory. For the intriguing mathematical coincidences underlying this correspondence the term “Black Hole Analogy” has been coined. The basic correspondence of the analogy is the one between the entropy formula of certain stringy black hole solutions on one hand and entanglement measures for qubit and qutrit systems on the other. In these lecture notes we develop the basic concepts of multiqubit entanglement needed for a clear exposition of the Black Hole Analogy. We show that using this analogy we can rephrase some of the well-known results and awkward looking expressions of supergravity in a nice form by employing some multiqubit entangled states depending on the quantized charges and the moduli. It is shown that the attractor mechanism in this picture corresponds to a distillation procedure of highly entangled graph states at the black hole horizon. As a further insight we also find a very interesting connection between error correcting codes, designs and the classification of extremal BPS and non-BPS black hole solutions.

Keywords

Black Hole Black Hole Solution Steiner Triple System Reduce Density Matrice Tripartite Entanglement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Financial support from the Országos Tudományos Kutatási Alap (grant numbers T047035, T047041) is gratefully acknowledged.

References

  1. 1.
    M.J. Duff, Phys. Rev. D 76, 025017 (2007). arXiv:hep-th/0601134
  2. 2.
    R. Kallosh, A. Linde, Phys. Rev. D 73, 104033 (2006). arXiv:hep-th/0602061
  3. 3.
    P. Lévay, Phys. Rev. D 74, 024030 (2006). arXiv:hep-th/0603136
  4. 4.
    M.J. Duff, S. Ferrara, Phys. Rev. D 76, 025018 (2007). arXiv:quant-ph/0609227
  5. 5.
    P. Lévay, Phys. Rev. D 75, 024024 (2007). arXiv:hep-th/0610314
  6. 6.
    S. Ferrara, R. Kallosh, A. Strominger, Phys. Rev. D 52, R5412 (1995)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    A. Strominger, Phys. Lett. B 383, 39 (1996)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    S. Ferrara, R. Kallosh, Phys. Rev. D 54, 1514 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    S. Ferrara, R. Kallosh, Phys. Rev. D 54, 1525 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    M.J. Duff, S. Ferrara, arXiv:hep-th/0612036
  11. 11.
    E. Cremmer, B. Julia, Phys. Lett. B 80, 48 (1978)CrossRefADSGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    M.J. Duff, S. Ferrara, arXiv:0704.0507 [hep-th]
  15. 15.
    P. Lévay, Phys. Rev. D 76, 106011 (2007). arXiv:0708.2799 [hep-th]
  16. 16.
    M.A. Nielsen, I.K. Chuang, Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  17. 17.
    I. Bengtsson, K. Zyczkowski, Geometry of Quantum States, (Cambridge University Press, Cambridge, 2006)zbMATHCrossRefGoogle Scholar
  18. 18.
    E. Schrödinger, Proc. Camb. Phil. Soc. 32, 446 (1936)CrossRefGoogle Scholar
  19. 19.
    L.P. Hughston, R. Jozsa, W.K. Wootters, Phys. Lett. A 183, 14 (1993)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  21. 21.
    C.M. Caves, C.A. Fuchs, P. Rungta, Found. Phys. Lett. 14, 199 (2001)CrossRefMathSciNetGoogle Scholar
  22. 22.
    W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    V. Coffman, J. Kundu, W. Woottersr, Phys. Rev. A 61, 052306 (2000)CrossRefADSGoogle Scholar
  24. 24.
    A. Cayley, Camb. Math. J. 4, 193 (1845)Google Scholar
  25. 25.
    P. Lévay, Phys. Rev. A 71, 012334 (2005)CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    J-G. Luque, J-Y. Thibon, Phys. Rev. A 67, 042303 (2003)Google Scholar
  27. 27.
    P. Lévay, J. Phys. A 39, 9533 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    F. Verstraete, J. Dehaene, B. De Moor, H. Verschelde, Phys. Rev. A 65, 052112 (2002)CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    A. Steane, Proc. R. Soc. Lond. A 452, 2551 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
  31. 31.
    J.H. Conway, N.J.A. Sloane, Sphere Packings Lattices and Groups (Springer, Berlin, 1993)zbMATHGoogle Scholar
  32. 32.
    M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H.J. Briegel, quant-ph/0602096
  33. 33.
    A. Ceresole, R. D’Auria, S. Ferrara, Nucl. Phys. B Proc. Suppl. 46, 67 (1996). arXiv:hep-th/9509160 l
  34. 34.
    A. Ceresole, S. Ferrara, A. Marrani, arXiv:0707.0964v1 [hep-th]
  35. 35.
    S. Ferrara, R. Kallosh, Phys. Rev. D 73, 125005 (2006). arXiv:hep-th/0603247
  36. 36.
    R. Kallosh, N. Sivanandam, M. Soroush, J. High Energy Phys. 03, 060 (2006). arXiv:hep-th/0602005
  37. 37.
    R. Kallosh, M. Shmakova, W.K. Wong, Phys. Rev. D 54, 6284 (1996). arXiv:hep-th/9607077
  38. 38.
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova, W.K. Wong, Phys. Rev. D 54, 6293 (1996). arXiv:hep-th/9608059
  39. 39.
    K. Behrndt, G. Lopes Cardoso, B de Wit, R. Kallosh, D. Lust, T. Mohaupt, Nucl. Phys. B 488, 236 (1997). arXiv:hep-th/9610105
  40. 40.
    K. Behrndt, D. Lust, W.A. Sabra, Nucl. Phys. B 510, 264 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  41. 41.
    W.A. Sabra, Nucl. Phys. B 510, 247 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  42. 42.
    W.A. Sabra, Mod. Phys. Lett. A 12, 2585 (1997)zbMATHCrossRefMathSciNetADSGoogle Scholar
  43. 43.
    F. Denef, hep-th/0010222
  44. 44.
    R. Kallosh, N. Sivanandam, M. Soroush, Phys. Rev. D 74, 065008 (2006)CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    K. Saraikin, C. Vafa, arXiv:hep-th/0703214
  46. 46.
    S. Bellucci, S. Ferrara, A. Marrani, Phys. Lett. B 635, 172 (2006). arXiv:hep-th/0602161
  47. 47.
    S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, Int. J. Mod. Phys. A 21, 5043 (2006). arXiv:hep-th/0606209
  48. 48.
    S. Bellucci, A. Marrani, E. Orazi, A. Shcherbakov, arXiv:0707.2731 [hep-th]
  49. 49.
    J. Schliemann, J.I. Cirac, M. Kus, M. Lewenstein, D. Loss, Phys. Rev. A 64, 022303 (2001)CrossRefADSGoogle Scholar
  50. 50.
    P. Lévay, Sz. Nagy, J. Pipek, Phys. Rev. A 72, 022302 (2005)Google Scholar
  51. 51.
    R. Paskauskas, L. You, Phys. Rev. A 64, 042310 (2001)CrossRefADSGoogle Scholar
  52. 52.
    G.C. Ghirardi, L. Marinatto, Phys. Rev. A 70, 012109 (2004)CrossRefADSGoogle Scholar
  53. 53.
    K. Eckert, J. Schliemann, D. Bruband, M. Lewenstein, Ann. Phys. (N.Y.) 299, 88 (2002)Google Scholar
  54. 54.
    B. Zumino, J. Math. Phys. 3, 1055 (1962)zbMATHCrossRefMathSciNetADSGoogle Scholar
  55. 55.
  56. 56.
    E. Cremmer, B. Julia, Nucl. Phys. B 159, 141 (1979)CrossRefMathSciNetADSGoogle Scholar
  57. 57.
    E. Cartan, Evres Complétes (Editions du Centre National de la Recherche Scientifique, Paris, 1984)Google Scholar
  58. 58.
    P.K. Tripathy, S.P. Trivedi, J. High Energy Phys. 03, 022 (2006). arXiv:hep-th/0511117
  59. 59.
    E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B 159, 141 (1979)CrossRefMathSciNetADSGoogle Scholar
  60. 60.
    R. Kallosh, B. Kol, Phys. Rev. D 53, 5344 (1996). arXiv:hep-th/9602014
  61. 61.
    S. Ferrara, M. Gunaydin, Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A 13, 2075 (1998). arXiv:hep-th/9708015
  62. 62.
    M. Cvetic, A.A. Tseytlin, Solitonic strings and BPS sarurated dyonic black holes. Phys. Rev. D 53, 5619 (1996). hep-th/9512031bi
  63. 63.
    B. Pioline, Class. Quant. Grav. 23, S981 (2006). hep-th/0607227
  64. 64.
    M. Gunaydin, G. Sierra, P.K. Townsend, Phys. Lett. B 133, 72 (1983)CrossRefMathSciNetADSGoogle Scholar
  65. 65.
    G. Chapline, arXiv:hep-th/9609162
  66. 66.
    E. Witten, arXiv:0706.3359 [hep-th]
  67. 67.
    K. Goldstein, N. Izuka, R.P. Jena, S.P. Trivedi, Phys. Rev. D 72, 124021 (2005). arXiv:hep-th/0507096

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Institute of PhysicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations