Skip to main content

Bioeffective-Linked Analysis in Modern HPTLC

  • Chapter
  • First Online:
Quantitative Thin-Layer Chromatography

Abstract

The purpose of bioeffective-linked analysis is to bridge the gap between cause and effect, that is, primarily not to identify a given analyte, but to identify a class of compounds with a defined bioactivity. This is the basis of screening tests for substances with special properties (e.g. fungicides) and for screening tests on new compounds with a particular biological activity. This approach is of interest in the search for new compounds that show a particular biological activity and for investigating samples containing substances whose identity is unknown or unavailable as reference standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weins C (2008) Overview of bioactiveity-based analysis by HPTLC. Bridging the gap between cause and effect – HPTLC detection of bioactive compounds in the environment and in food. J Planar Chromatogr 21:405–410

    Article  CAS  Google Scholar 

  2. Brack W (2003) Effect directed analysis: a promising tool for the identification of organic toxicants in complex mixtures. Anal Bioanal Chem 377:397–407

    Article  CAS  Google Scholar 

  3. Walker KC, Beroza M (1963) Thin-layer chromatography for insecticide analysis. J Assoc Off Agric Chem 46:250–261

    CAS  Google Scholar 

  4. Mori H, Sato T, Nagase H, Sakai Y, Yamaguchi S, Iwata Y, Hashimoto R (1994) Rapid screening method for pesticides as the cause substance of toxicosis by TLC. Jpn J Toxicol Environ Health 40:101–110

    Article  CAS  Google Scholar 

  5. Sherma J (2005) In: Cazes J (ed) Pesticide analysis by thin layer chromatography. Encyclopedia of Chromatography, 2nd edn. Dekker, New York, pp 1230–1238

    Google Scholar 

  6. Sherma J (2005) Thin-layer chromatography of pesticides – a review of applications for 2002–2004. Acta Chromatogr 15:5–30

    CAS  Google Scholar 

  7. Deutsches Institut für Normung (DIN) (ed) (1990) DIN 38407, part 11. Beuth, Berlin

    Google Scholar 

  8. Müller MB, Dausend C, Weins Ch, Frimmel FH (2004) A new bioautographic screening method for the detection of estrogenic compounds. Chromatographia 60:207–211

    Google Scholar 

  9. Weins C (2006) Dissertation Universität Basel (Prof. Dr. Michael Oehme)

    Google Scholar 

  10. Geike F (1972) Verfahren zum dünnschicht-chromatographisch-enzymatischen Nachweis von Schwermetallen mit Urease. Fresenius Z Anal Chem 258:284–285

    Article  CAS  Google Scholar 

  11. Geike F, Schuphan L (1972) Dünnschicht-chromatographischer Nachweis von Organoquecksilber-Verbindungen. J Chromatogr 72:153–163

    Article  CAS  Google Scholar 

  12. Pazur JH, Romanic BM (1979) Paper chromatography – enzyme spray technique for the detection of sugar nucleotides with galactose and N-acetylgalactosamine residues. J Chromatogr 169:495–499

    Article  CAS  Google Scholar 

  13. Yamaguchi Y (1979) Excretion pattern of 3ß-hydroxysteroids in patients with adrenal tumor, cushing’s disease and 21-hydroxylase deficiency, and in pregnancy, using thin-layer chromatography and color development of 3ß-hydroxysteroids with 3ß-hydroxysteroid oxidase. J Chromatogr 163:253–258

    Article  CAS  Google Scholar 

  14. Yamaguchi Y (1980) Enzymic color development of urinary 3-hydroxysteroids on thin-layer chromatograms. Clin Chem 26:491–493

    CAS  Google Scholar 

  15. Mendoza CE (1972) Analysis of pesticides by thin-layer chromatographic-enzyme inhibition technique. Residue Rev 43:105–142

    CAS  Google Scholar 

  16. Mendoza CE (1974) Analysis of pesticides by thin-layer chromatographic-enzyme inhibition technique, part II. Residue Rev 50:43–72

    Article  CAS  Google Scholar 

  17. Mendoza CE (1973) Thin-layer chromatography and enzyme inhibition techniques. J Chromatogr 78:29–40

    Article  CAS  Google Scholar 

  18. Mendoza CE, Shields JB (1973) Determination of some carbamates by enzyme inhibition techniques using thin-layer chromatography and colorimetry. J Agr Food Chem 21:178–184

    Article  CAS  Google Scholar 

  19. Ambrus A, Hargitai A, Károly É, Fülöp G, Lantos A (1981) General method for determination of pesticide residues in samples of plant origin, soil, and water. II. Thin layer chromatographic determination. J Assoc Off Anal Chem 64:743–748

    CAS  Google Scholar 

  20. Akkad R, Schwack W (2008) Multi-enzyme inhibition assay for detection of insecticidal organophosphates and carbamates by high-performance thin-layer chromatography. 1. Basics of the method development. J Planar Chromatogr 21:411–415

    Article  CAS  Google Scholar 

  21. Marston A, Kissling J, Hostettmann K (2002) A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibition in plants. Phytochem Anal 13:51–54

    Article  CAS  Google Scholar 

  22. Rhee IK, van de Meent M, Ingkaninan K, Verpoorte R (2001) Screening for acetylcholinesterase inhibitors from amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J Chromatogr A 915:217–223

    Article  CAS  Google Scholar 

  23. Weins Ch, Jork H (1996) Toxicological evaluation of harmful substances by in situ enzymatic and biological detection in high-performance thin-layer chromatography. J Chromatogr A 750:403–407

    Article  CAS  Google Scholar 

  24. Schneider J (1986) Dünnschichtchromatographischer Nachweis von Methamidophos durch enzymatische Detektion. Die Nahrung 30:859–860

    CAS  Google Scholar 

  25. Ackermann H (1968) Dünnschichtchromatographisch-enzymatischer Nachweis phosphororganischer Verbindungen. J Chromatogr 36:309–317

    Article  CAS  Google Scholar 

  26. Bhaskar SU, Nanda Kumar NV (1981) Thin layer chromatographic determination of methyl parathion as paraoxon by cholinesterase inhibition. J Assoc Off Anal Chem 64:1312–1314

    CAS  Google Scholar 

  27. Hamada M, Wintersteiger R (2003) Fluorescence screening of organophosphorus pesticides in water by an enzyme inhibition procedure on TLC plates. J Planar Chromatogr 16:4–9

    Article  CAS  Google Scholar 

  28. Winterlin W, Walker G, Frank H (1968) Detection of cholinesterase-inhibiting pesticides following separation on thin-layer chromatograms. J Agr Food Chem 16:808–812

    Article  CAS  Google Scholar 

  29. Guilbault GG, Kramer DN (1965) Resorufin butyrate and indoxyl acetate as fluorogenic substrates for cholinesterase. Anal Chem 37:120–123

    Article  CAS  Google Scholar 

  30. Mendoza CE, Wales PJ, McLeod HA, McKinley WP (1968) Procedure for semi-quantitative confirmation of some organophosphorus pesticide residues in plant extracts. Analyst 93:691–693

    Article  Google Scholar 

  31. Štefanac Z, Štengel B, Vasilic Z (1976) Quantitative determination of organophosphorus pesticides by thin-layer densitometry. J Chromatogr 124:127–133

    Article  Google Scholar 

  32. Wales PJ, McLeod HA, McKinley WP (1968) TLC-enzyme inhibition procedure to detect some carbamate standards and carbaryl in food extracts. J Assoc Off Anal Chem 51:1239–1242

    CAS  Google Scholar 

  33. Vashkevich OV, Gankina ES (1990) Quantitative determination of organophosphorus pesticides by HPTLC with detection by enzyme inhibition. J Planar Chromatogr 3:354–356

    CAS  Google Scholar 

  34. Breuer H (1982) Sensitive and rapid detection of paraoxon by thin-layer chromatography and strips using enzyme inhibition and Ellman’s method. J Chromatogr 243:183–187

    Article  CAS  Google Scholar 

  35. Kováč J, Kurucová M, Bátora V, Tekel J, Sterniková V (1983) Chronometric technique for the quantitative analysis of some photosynthesis-inhibiting herbicides. J Chromatogr 280:176–180

    Article  Google Scholar 

  36. Kováč J, Henselová M (1977) Detection of triazine herbicides in soil by a Hill-reaction inhibition technique after thin-layer chromatography. J Chromatogr 133:420–422

    Article  Google Scholar 

  37. Lawrence JF (1980) Simple, sensitive, and selective thin layer chromatographic technique for detecting some photosynthesis inhibiting herbicides. J Assoc Off Anal Chem 63:758–761

    CAS  Google Scholar 

  38. Sackmauerová M, Kovác J (1978) Thin layer chromatographic determination of triazine and urea herbicides in water by inhibition detection method. Fresenius Z Anal Chem 292:414–415

    Article  Google Scholar 

  39. Baumann U, Brunner C, Pletscher E, Tobler N (2003) Biologische Detektionsverfahren in der Dünnschichtchromatographie. Umweltwissenschaften und Schadstoff-Forsch 15:163–167

    Article  CAS  Google Scholar 

  40. Eberz G, Rast H-G, Burger K, Kreiss W, Weisemann C (1996) Bioactive screening by chromatography-bioluminescence coupling. Chromatographia 43:5–9

    Article  CAS  Google Scholar 

  41. Schulz W, Seitz W, Weins SC, Weber WH, Böhm M, Flottmann D (2008) Use of Vibrio fischeri for screening for bioactivity in water analysis. J Planar Chromatogr 21:427–430

    Article  CAS  Google Scholar 

  42. Weins Ch, Collet P (2002) Bestimmung von Schadstoffen in Lebensmitteln – Wirkungsbezogene Analytik, ein neues Konzept zur schnellen Erfassung von Pestiziden in einer Probe. Lebensmittelchemie 56:128–131

    CAS  Google Scholar 

  43. Adinarayana M, Singh US, Dwivedi TS (1988) A biochromatographic technique for the quantitative estimation of triphenyltin fungicides. J Chromatogr 435:210–218

    Article  CAS  Google Scholar 

  44. Homans AL, Fuchs A (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J Chromatogr 51:327–329

    Article  CAS  Google Scholar 

  45. Hamburger MO, Cordell GA (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J Nat Prod 50:19–22

    Article  CAS  Google Scholar 

  46. Betina V (1973) Bioautography in paper and thin-layer chromatography and its scope in the antibiotic field. J Chromatogr 78:41–51

    Article  CAS  Google Scholar 

  47. Hostettmann K, Terreaux Ch, Marston A, Potterat O (1997) The role of planar chromatography in the rapid screening and isolation of bioactive compounds from medicinal plants. J Planar Chromatogr 10:251–257

    CAS  Google Scholar 

  48. Wehge DE, Nagle DC (2000) A new 2D TLC bioautography method for the discovery of novel antifungal agents to control plant pathogens. J Nat Prod 63:1050–1054

    Article  Google Scholar 

  49. Rahalison L, Hamburger M, Hostettmann K, Monod M, Frenk E (1991) A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem Analysis 2:199–203

    Article  CAS  Google Scholar 

  50. Gafner J-L (1999) Identification and semiquantitative estimation of antibiotics added to complete feeds, premixes, and concentrates. J Assoc Off Anal Chem 82:1–8

    CAS  Google Scholar 

  51. Vanderkop PA, McNeil JD (1989) Thin-layer chromatography/bioautography method for detection of monensin in poultry tissues. J Assoc Off Anal Chem 72:735–738

    CAS  Google Scholar 

  52. Eymann R, Fischer W, Hauck HE, Weins Ch (2001) Nachweis von Antibiotika in Futtermitteln durch wirkungsbezogene Analytik. Fleischwirtschaft 8:95–96

    Google Scholar 

  53. Choma IM, Choma A, Komaniecka I, Pilorz K, Staszczuk K (2004) Semiquantitative estimation of enrofloxacin and ciprofloxacin by thin-layer chromatography – direct bioautography. J Liq Chromatogr Rel Technol 27:2071–2085

    CAS  Google Scholar 

  54. Móricz ÁM, Adányi N, Horváth E, Ott PG, Tyihák E (2008) Applicability of the BioArena system to investigation of the mechanisms of biological effects. J Planar Chromatogr 21:417–422

    Article  Google Scholar 

  55. Móricz ÁM, Tyihák E, Ott PG (2010) Usefulness of transgenic luminescent bacteria in direct bioautographic investigation of chamomile extracts. J Planar Chromatogr 23:180–183

    Google Scholar 

  56. Möller M, Landmark LH, Björseth A, Renberg L (1984) Characterisation of industrial aqueous discharges by the TLC/Ames’ assay. Chemosphere 13:873–879

    Article  Google Scholar 

  57. Houk VS, Claxton LD (1986) Screening complex hazardous wastes for mutagenic activity using a modified version of the TLC/Salmonella assay. Mut Res 169:81–92

    Article  CAS  Google Scholar 

  58. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Spangenberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spangenberg, B., Poole, C.F., Weins, C. (2010). Bioeffective-Linked Analysis in Modern HPTLC. In: Quantitative Thin-Layer Chromatography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10729-0_8

Download citation

Publish with us

Policies and ethics