Zusammenfassung
Infektionen, die vom Tier auf den Menschen übertragen werden, werden als Zoonosen bezeichnet. Pathogene Mikroorganismen können entweder durch Mensch-Mensch, Mensch-Tier-Kontakt oder durch Kontakt mit kontaminierten Vektoren übertragen werden [39]. Vektoren können einerseits belebt (z. B. blutsaugende Insekten), andererseits unbelebt sein. Kontaminierte Lebensmittel und Wasser gehören zu den wichtigsten unbelebten Vektoren. Neben Lebensmitteln können aber auch kontaminierte Gegenstände oder der Kontakt mit Kontaminationsquellen in der Umwelt Auslöser von Krankheitsfällen sein. Weltweit sind mehr als 1400 krankheitsverursachende biologische Agentien bekannt, von denen über 60 % ein zoonotisches Potenzial aufweisen. Als Ergebnis von Expertengesprächen wurde kürzlich berichtet, dass etwa 3 bis 4, meist virale, neu auftretende Infektionskrankheiten („emerging diseases“) pro Jahr erwartet werden können [15]. Es handelt sich bei diesen Vorgängen aber nicht nur um das Auftauchen vollkommen neuer oder unbeschriebener Spezies, sondern auch um evolutionsbedingte Anpassungen von mikrobiellen Populationen an neue Bedingungen in ihrem Ökosystem [7]. Molekulare Analysen an Umweltchlamydien erbrachten Hinweise, dass die Evolution erste genetische Pathogenitätsmerkmale in dieser Spezies schon vor 700 Mio. Jahren entstehen ließ [14]. Viele Faktoren befeuern den Prozess der Anpassung, unter anderem auch alle Strategien, mit denen der Mensch seit Jahrtausenden versucht, Lebensmittel sicher und haltbar zu machen. Als die treibenden Kräfte des Auftretens neuer Krankheitserreger werden in der Gegenwart vor allem das sich ändernde Weltklima, die globalen Warenströme und die sich verändernden Konsumgewohnheiten genannt. Es steht auch außer Zweifel, dass viele dieser Erreger Tiere als ihr natürliches Reservoir haben werden, d. h. Zoonosen im klassischen Sinne sind [15].
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsLiteratur
Anonymus (2005) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens-Performance testing for thermal cyclers (ISO/TS 20836). Internationale Standardisierungsorganisation (ISO), Genf, Schweiz.
Anonymus (2006a) Real-time PCR. Dorak, T. (Ed.), Taylor & Francis Group, New York, USA.
Anonymus (2006b) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens-Requirements for sample preparation for qualitative detection (ISO/TS 20837). Internationale Standardisierungsorganisation (ISO), Genf, Schweiz.
Anonymus (2006c) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens-Requirements for amplification and detection for qualitative methods (ISO/TS 20838). Internationale Standardisierungs-organisation (ISO), Genf, Schweiz.
Anonymus (2007a) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens-Performance characteristics of molecular detection methods (ISO/TS 22118). Internationale Standardisierungs-organisation (ISO), Genf, Schweiz.
Anonymus (2007b) Microbiology of food and animal feeding stuffs-Polymerase Chain Reaction for the detection of foodborne pathogens- General requirements and definitions (ISO/TS 22119). Internationale Standardisierungsorganisation (ISO), Genf, Schweiz.
Cleaveland, S., Haydon, D.T., Taylor, L. (2007) Overviews of pathogen emergence: which pathogens emerge, when and why? Curr. Top. Microbiol. Immunol. 315, 85–111.
Cook, N. (2003) The use of NASBA for the detection of microbial pathogens in food and environmental samples. J. Microbiol. Meth. 53, 165–174.
European Communities (EC) (2009) The rapid alert system for Food and Feed (RASFF). Annual Report 2008. RASFF Luxembourg (http://www.efet.gr/docs/rasff/report2008_en.pdf).
European Food Safety Authority (EFSA) (2009) Trend and sources of zoonoses and zoonotic agents in the European Union in 2007. EFSA J. 223.
Flekna, G., Stefanic, P., Smulders, F.J.M., Smole, S., Wagner, M., Hein, I. (2007) Studying the effect of EMA on live and dead Campylobacter jejuni and Listeria monocytogenes cells to augment the scientific basis for the application of EMA/real-time PCR. Res. Microbiol. 158, 405–412.
Fukushima, H., Katsube, K., Hata, Y., Kishi, R., Fujiwara, S. (2007) Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl. Environ. Microbiol. 73, 92–100.
Hoorfar, J., Malorny, B., Abdulmawjood, A., Cook, N., Wagner, M., Fach, P. (2004) Practical considerations in design of internal amplification control for diagnostic PCR. J. Clin. Microbiol. 42, 1863–1868.
Horn, M., Collingro, A., Schmitz-Esser, S., Beier, C.L., Purkhold, U., Fartmann, B., Brandt, P., Nyakatura, G.J., Droege, M., Frishman, D., Rattei, T., Mewes, H.W., Wagner, M. (2004) Illuminating the evolutionary history of chlamydiae. Science 304, 728–730.
Hueston, W. (2007) The landscape for Veterinary Public Health until 2013. Presentation at the General Meeting of the European College of Veterinary Public Health, Helsinki, 17.-9.-19.9.2007.
Huggett, J., Green, C., Zumla, A. (2009) Nucleic acid detection and quantification in the developing world. Biochem. Soc. Trans. 37, 419–423.
Klein, P.G., Juneja, V.K. (1997) Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Appl. Environ. Microbiol. 63, 4441–4448.
Lau, L.T., Fung, Y.W., Yu, A.C. (2006) Detection of animal viruses using nucleic acid sequence-based amplification. Dev. Biol. 126, 7–15.
Lauer, P., Chow, M.Y., Loessner, M.J., Portnoy, D.A., Calendar, R. (2002) Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184, 4177–4186.
Lindqvist, R., Norling, B., Lambertz, S.T. (1997) A rapid preparation method for PCR detection of food pathogens based on buoyant density centrifugation. Lett. Appl. Microbiol. 24, 306–310.
Malorny, B., Tassios, P.T., Radström, P., Cook, N., Wagner, M., Hoorfar, J. (2002) Standardization of diagnostic PCR for the detection of foodborne pathogens. International J. Food Microbiol. 83, 39–48.
Mayrl, E., Roeder, B., Mester, P., Wagner, M., Rossmanith, P. (2009) Broad range evaluation of the matrix solubilization (matrix lysis) strategy for direct enumeration of food-borne pathogens by nucleic acids technologies. J. Food Prot. 72 (6), 1225–1233.
Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M., Tauxe, R.V. (1999) Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607–625.
Morrison, T., Hurley, J., Garcia, J., Yoder, K., Katz, A., Roberts, D., Cho, J., Kanigan, T., Ilyin, S.E., Horowith, D., Dixon, J.M., Brenan, C.J. (2006) Nanoliter high throughput quantitative PCR. Nucl. Acids Res. 34 (18), e123.
Nocker, A., Camper, A.K. (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl. Environ. Microbiol. 72, 1997–2004.
Nocker, A., Ceung, C.-Y., Camper, A.K. (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Meth. 67, 310–320.
Nogva, H.K., Drømtorp, S.M., Nissen, H., Rudi, K. (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. BioTechniques 34, 804–813.
Norton, D.-M., Batt, C.A. (1999) Detection of viable Listeria monocytogenes with a 5′nuclease PCR assay. Appl. Environ. Microbiol. 65, 2122–2127.
Oravcová, K., Kuchta, T., Kacliková, E. (2007) A novel real-time PCR based method for the detection of Listeria monocytogenes in food. Lett. Appl. Microbiol. 45, 568–573.
Pappelbaum, K., Grif, K., Würzner, R., Hein, I., Ellerbroek, L., Wagner, M. (2008) Contamination chains of Listeria monocytogenes in a produce processing plant. J. Food Prot. 71, 735–741.
Rossmanith, P., Süß, B., Wagner, M., Hein, I. (2007) Development of a novel method based on matrix lysis for concentration of bacteria from food and blood and application for the real-time PCR based quantification of L. monocytogenes in milk. J. Microbiol. Meth. 69, 504–511.
Rudi, K., Moen, B., Drømtorp, S.M., Holck, A.L. (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 71, 1018–1024.
Rueckert, A., Ronimus, R.S., Morgan, H.W. (2005) Rapid differentiation and enumeration of the total, viable vegetative cell and spore content of thermophilic bacilli in milk powders with reference to Anoxybacillus flavithermus. J. Appl. Microbiol. 99, 1246–1255.
Schlech, W.F., Lavigne, P.M., Bortolussi, R.A., Allen, A.C., Haldane, E.V., Wort, A.J., Hightower, A.W., Jonson, S.E., King, S.H., Nicholls, E.S., Broome, C.V. (1983) Epidemic listeriosis -- evidence for transmission by food. New Engl. J. Med. 308, 203–206.
Schwillinsky-Reichert, F., Pin, C., Dzieciol, M., Rieck, P., Wagner, M., Hein, I. (2009) Stress and growth rate related differences between plate count and real-time PCR data during growth of Listeria monocytogenes. Appl. Environ. Microbiol. 75(7), 2132–2138.
Süss, B., Flekna, G., Wagner, M., Hein, I. (2009) Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Meth. 76, 316–319.
Skirrow, M.B. (2006) John McFadyean and the centenary of the first isolation of Campylobacter species. Clin. Infect. Dis.43 (9), 1213–1217.
Stirling, J., Griffith, M., Dooley, J.S., Goldsmith, C.E., Loughrey, A., Lowery, C.J., McClurg, R., McCorry, K., McDowell, D., McMahon, A., Millar, B.C., Rao, J., Rooney, P.J., Snelling, W.J., Matsuda, M., Moore, J.E. (2008) Zoonoses associated with petting farms and open zoos. Vector Borne Zoon. Dis. 8, 85–92.
Uyttendaele, M., Schukkink, R., Van Gemen, B., Debevere, J. (1995) Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA). Appl. Environ. Microbiol. 61, 1341–1347.
Wagner, M., Wolffs, P., Kuhn, M., Schoder, D., Hoorfar, J., Radström, P. (2003) Zur Reproduzierbarkeit von PCR-Ergebnissen. Proc. 44th Jahrestagung der Deutschen Veterinärmedizinischen Gesellschaft für Lebensmittelhygiene, Garmisch-Partenkirchen, 139–147.
Wang, S., Levin, R.E. (2006) Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. J. Microbiol. Meth. 64, 1–8.
Wolffs, P., Knutsson, R., Norling, B., Rådström, P. (2004) Rapid quantification of Yersinia enterocolitica in pork samples by a novel sample preparation method, flotation, prior to real-time PCR. J. Clin. Microbiol. 42, 1042–1047.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Wagner, M. (2010). Pathogene Mikroorganismen. In: Busch, U. (eds) Molekularbiologische Methoden in der Lebensmittelanalytik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10716-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-10716-0_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10715-3
Online ISBN: 978-3-642-10716-0
eBook Packages: Life Science and Basic Disciplines (German Language)