Skip to main content

Reducing Function Evaluations Using Adaptively Controlled Differential Evolution with Rough Approximation Model

  • Chapter

Part of the book series: Adaptation Learning and Optimization ((ALO,volume 2))

Abstract

In this chapter, a rough approximation model, which is an approximation model with low accuracy and without learning process, is presented in order to reduce the number of function evaluations effectively. Although the approximation errors between the true function values and the approximation values are not small, the rough model can estimate the order relation of solutions with fair accuracy. By utilizing this nature of the rough model, we have proposed estimated comparison method, in which function evaluations are omitted when the order relation of solutions can be judged by approximation values. In the method, a parameter for error margin is introduced to avoid incorrect judgment. Also, a parameter for utilizing congestion of solutions is introduced to avoid omitting promising solutions. In order to improve the stability and efficiency of the method, we propose adaptive control of the margin parameter and the congestion parameter according to the success rate of the judgment. The advantage of these improvements is shown by comparing the results obtained by Differential Evolution (DE), DE with the estimated comparison method, adaptively controlled DE with the estimated comparison method and particle swarm optimization in various types of benchmark functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Büche, D., Schraudolph, N.N., Koumoutsakos, P.: Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews 35(2), 183–194 (2005)

    Article  Google Scholar 

  2. Chakraborty, U.K. (ed.): Advances in Differential Evolution. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  3. Clerc, M.: Standard_pso_2007.c (2007), http://www.particleswarm.info/

  4. Giunta, A., Watson, L.: A comparison of approximation modeling techniques: Polynomial versus interpolating models. Tech. Rep. 98-4755, AIAA (1998)

    Google Scholar 

  5. Guimarães, F.G., Wanner, E.F., Campelo, F., Takahashi, R.H., Igarashi, H., Lowther, D.A., Ramírez, J.A.: Local learning and search in memetic algorithms. In: Proc. of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 9841–9848 (2006)

    Google Scholar 

  6. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing 9, 3–12 (2005)

    Article  Google Scholar 

  7. Jin, Y., Sendhoff, B.: Reducing fitness evaluations using clustering techniques and neural network ensembles. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 688–699. Springer, Heidelberg (2004)

    Google Scholar 

  8. Jin, Y., Olhofer, M., Sendhoff, B.: On evolutionary optimization with approximate fitness functions. In: Proc. of the Genetic and Evolutionary Computation Conference, pp. 786–792. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  9. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. on Evolutionary Computation 6(5), 481–494 (2002)

    Article  Google Scholar 

  10. Ong, Y.S., Zhou, Z., Lim, D.: Curse and blessing of uncertainty in evolutionary algorithm using approximation. In: Proc. of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 9833–9840 (2006)

    Google Scholar 

  11. Shyy, W., Tucker, P.K., Vaidyanathan, R.: Response surface and neural network techniques for rocket engine injector optimization. Tech. Rep. 99-2455, AIAA (1999)

    Google Scholar 

  12. Simpson, T.W., Mauery, T.M., Korte, J.J., Mistree, F.: Comparison of response surface and kriging models in the multidisciplinary design of an aerospike nozzle. Tech. Rep. 98-4758, AIAA (1998)

    Google Scholar 

  13. Storn, R., Price, K.: Minimizing the real functions of the ICEC 1996 contest by differential evolution. In: Proc. of the International Conference on Evolutionary Computation, pp. 842–844 (1996)

    Google Scholar 

  14. Storn, R., Price, K.: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites. In: Proc. of the 2006 IEEE Congress on Evolutionary Computation, pp. 308–315 (2006)

    Google Scholar 

  16. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential evolution with dynamic ε-level control. In: Chakraborty, U. (ed.) Advances in Differential Evolution. Springer, Heidelberg (2008)

    Google Scholar 

  17. Takahama, T., Sakai, S.: Reducing function evaluations in differential evolution using rough approximation-based comparison. In: Proc. of the 2008 IEEE Congress on Evolutionary Computation, pp. 2307–2314 (2008)

    Google Scholar 

  18. Takahama, T., Sakai, S.: Efficient constrained optimization by the ε constrained differential evolution using an approximation model with low accuracy. Transactions of the Japanese Society for Artificial Intelligence 24(1), 34–45 (2009) (in Japanese)

    Article  Google Scholar 

  19. Takahama, T., Sakai, S., Iwane, N.: Solving nonlinear constrained optimization problems by the ε constrained differential evolution. In: Proc. of the 2006 IEEE Conference on Systems, Man, and Cybernetics, pp. 2322–2327 (2006)

    Google Scholar 

  20. Takahama, T., Sakai, S., Hara, A.: Reducing the number of function evaluations in differential evolution by estimated comparison method using an approximation model with low accuracy. IEICE Trans. on Information and Systems J91-D(5), 1275–1285 (2008) (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takahama, T., Sakai, S. (2010). Reducing Function Evaluations Using Adaptively Controlled Differential Evolution with Rough Approximation Model. In: Tenne, Y., Goh, CK. (eds) Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10701-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10701-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10700-9

  • Online ISBN: 978-3-642-10701-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics