Skip to main content

Evolutionary Algorithms for the Multi Criterion Minimum Spanning Tree Problem

  • Chapter

Part of the book series: Adaptation Learning and Optimization ((ALO,volume 2))

Abstract

In many real world network problems several objectives have to be optimized simultaneously. To solve such problems, it is often appropriate to use the multi-criterion minimum spanning tree (MCMST) model, a combinatorial optimization problem that has been shown to be NP-Hard. In Pareto Optimization of the model no polynomial time algorithm is known to find the Pareto front for all instances of the MCMST problem. Researchers have therefore developed deterministic and evolutionary algorithms. However, these exhibit a number of shortcomings such as lack of scalability and large CPU times. Therefore, the hybridised Knowledge-based Evolutionary Algorithm (KEA) has been proposed, which does not have the limitations of previous algorithms because of its speed, its scalability to more than 500 nodes in the bi-criterion case and scalability to the multicriterion case, and its ability to find both the supported and non-supported optimal solutions. KEA is faster and more efficient than NSGA-II in terms of spread and number of solutions found. The only weakness of KEA is the dominated middle of its Pareto front. In order to overcome this deficiency, a number of modifications have been tested including KEA-M, KEA-G and KEA-W. Experimental results show that when time is expensive KEA is preferable to all other algorithms tested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K., Jörnsten, A.K., Lind, M.: On bicriterion minimal spanning trees: An approximation. Comput. Oper. Res. 23, 1171–1182 (1996)

    Article  MathSciNet  Google Scholar 

  2. Arroyo, J.E.C., Vieira, P.S., Vianna, D.S.: A GRASP algorithm for the multi-criteria minimum spanning tree problem. In: Second Brazilian Symp. on Graphs (GRACO 2005), Rio de Janeiro, Brazil (2005); Also the Sec. Multidiscip. Conf. on Sched.: Theory and Apps., New York (2005)

    Google Scholar 

  3. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Heuristics, LPs and trees on trees: Network design analyses. Ops. Res. 44, 478–496 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bookstein, A., Klein, S.T.: Compression of correlated bit-vectors. Inf. Syst. 16, 110–118 (1996)

    Google Scholar 

  5. Bosman, P.A.N., Thierens, D.: Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms. Int. J. App. Reas. 31, 259–289 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bosman, P.A.N., Thierens, D.: A thorough documentation of obtained results on real-valued continuous and combinatorial multi-objective optimization problems using diversity preserving mixture-based iterated density estimation evolutionary algorithms, Tech. Rep., Institute of Information and Computing Sciences, Utrecht University, The Netherlands (2002)

    Google Scholar 

  7. Chen, G., Chen, S., Guo, W., Chen, H.: The multi-criteria minimum spanning tree problem based genetic algorithm. Inf. Sci. 177, 5050–5063 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Christofides, N.: Graph Theory: An Algorithmic Approach. Academic Press Inc., London (1975)

    MATH  Google Scholar 

  9. Coello Coello, C.A.: A short tutorial on evolutionary multi-objective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 21–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Davis-Moradkhan, M., Browne, W.: A hybridized evolutionary algorithm for multi-criterion minimum spanning tree problem. In: Proc. 8th. Int. Conf. Hybrid Intell. Sys. (HIS 2008), pp. 290–295 (2008)

    Google Scholar 

  11. Davis-Moradkhan, M., Browne, W., Grindrod, P.: Extending evolutionary algorithms to discover tri-criterion and non-supported solutions for the minimum spanning tree problem. In: Proc. Genet. Evol. Comput. (GECCO 2009), Montréal, Canada, pp. 1829–1830 (2009)

    Google Scholar 

  12. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 181–197 (2002)

    Google Scholar 

  14. Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization: State of the Art. Annotated Bibliographic Surveys. Kluwer’s International Series (2002)

    Google Scholar 

  15. Ehrgott, M., Skriver, A.J.: Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phase approach. Eur. J. Oper. Res. 147, 657–664 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Flores, S.D., Cegla, B.B., Cáceres, D.B.: Telecommunication network design with parallel multi-objective evolutionary algorithms. In: Proc. IFIP/ACM Lat. Am. Conf.: Towards Lat Am Agenda Network Res, La Paz, Bolivia (2003)

    Google Scholar 

  17. Gabow, H.N.: Two algorithms for generating weighted spanning trees in order. SIAM J. Comput. 6, 139–150 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gastner, M.T., Newman, M.E.J.: Shape and efficiency in spatial distribution networks. J. Stat. Mech. Theory & Exp. 1, 1015–1023 (2006)

    Article  Google Scholar 

  19. Goldbarg, E.F.G., De Souza, G.R., Goldbarg, M.C.: Particle swarm optimization for the bi-objective degree-constrained minimum spanning tree. In: Proc. IEEE Congr. Evol. Comput., Vancouver, BC, Canada, pp. 1527–1534 (2006)

    Google Scholar 

  20. Guo, W., Chen, G., Feng, X., Yu, L.: Solving multi-criteria minimum spanning tree problem with discrete particle swarm optimization. In: Proc. 3rd Int. Conf. Nat. Comput. (ICNC 2007), pp. 471–478 (2007)

    Google Scholar 

  21. Hamacher, H.W., Ruhe, G.: On spanning tree problems with multiple objectives. An. Oper. Res. 52, 209–230 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Han, L., Wang, Y.: A novel genetic algorithm for multi-criteria minimum spanning tree problem. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 297–302. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. López-Ibáñez, M., Paquete, L., Stützle, T.: On the design of ACO for the biobjective quadratic assignment problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 214–225. Springer, Heidelberg (2004)

    Google Scholar 

  24. Katoh, N., Ibaraki, T., Mine, H.: An algorithm for finding K minimum spanning trees. SIAM J. Comput. 10, 247–255 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Knowles, J.D.: Local search and hybrid evolutionary algorithms for Pareto optimization, Ph.D. Dissertation R8840, Department of Comput. Sci., University of Reading, Reading, UK (2002)

    Google Scholar 

  26. Knowles, J.D.: ParEGO: A Hybrid Algorithm with On-Line Landscape Approximation for Expensive Multi-objective Optimization Problems. IEEE Trans. Evol. Comput. 10, 50–66 (2006)

    Article  Google Scholar 

  27. Knowles, J.D., Corne, D.W.: Approximating the non-dominated front using the Pareto archived evolution strategy. Evol. Comput. 8, 149–172 (2000)

    Article  Google Scholar 

  28. Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms for Multi-objective Minimum Spanning Tree Problems. In: Proc. Congr. Evol. Comput. (CEC 2001), pp. 544–551. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  29. Knowles, J.D., Corne, D.W.: A Comparative Assessment of Memetic, Evolutionary, and Constructive Algorithms for the Multi-objective d-MST Problem. In: Proc. Genet. Evol. Comput. Conf. (Workshop WOMA II), Available on author’s website (2001), http://dbk.ch.umist.ac.uk/klowles/

  30. Knowles, J.D., Corne, D.W.: Benchmark Problem Generators and Results for the Multi-objective Degree-Constrained Minimum Spanning Tree Problem. In: Proc. Genet. Evol. Comput. Conf. (GECCO 2001), pp. 424–431. Morgan Kuafman Publishers, San Francisco (2001)

    Google Scholar 

  31. Kruskal Jr., K.B.: On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Amer. Math. Soc. 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  32. Kumar, R., Banerjee, N.: Multicriteria network design using evolutionary algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2179–2190. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  33. Kumar, R., Singh, P.K., Chakrabarti, P.P.: Multiobjective EA approach for improved quality of solutions for spanning tree problem. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 811–825. Springer, Heidelberg (2005)

    Google Scholar 

  34. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 169, 932–942 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Michalewics, Z.: Genetic Algorithms + Dta Structures = Evolution Programs. Springer, U.S.A (1992)

    Google Scholar 

  36. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. In: Beyer, H.-G. (ed.) Proc. Genet. Evol. Comput. (GECCO 2005), pp. 763–769 (2005)

    Google Scholar 

  37. Ng, H.S., Lam, K.P., Tai, W.K.: Analog and VLSI implementation of connectionist network for minimum spanning tree problems. In: Proc. IEEE Reg. 10 Int. Conf. Microelectron & VLSI (TENCON 1995), Hong Kong, pp. 137–140 (1995)

    Google Scholar 

  38. Obradovié, N., Peters, J., Ružié, G.: Multiple communication trees of optimal circulant graphs with two chord lengths, Tech. Rep. SFU-CMPT-TR-2004-04, School of Comput. Sci., Simon Fraser University, Barnaby, British Colombia, V5A 1S6, Canada (2004)

    Google Scholar 

  39. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  40. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Google Scholar 

  41. Raidl, G.R., Julstrom, B.A.: Edge sets: An effective evolutionary coding of spanning trees. IEEE Trans. Evol. Comput. 7, 225–239 (2003)

    Article  Google Scholar 

  42. Ramos, R.M., Alonso, S., Sicila, J., González, C.: The Problem of the optimal bi-objective spanning tree. Eur. J. Oper. Res. 111, 617–628 (1998)

    Article  MATH  Google Scholar 

  43. Roy, B.: Méthodologie Multicritère d’Aide à la Décision, Ed. Économica, Paris (1985)

    Google Scholar 

  44. Schwefel, H.-P.: Evolution and Optimum Seeking. John Wiley & Sons, Inc., USA (1995)

    Google Scholar 

  45. Soak, S.-M., Corne, D., Ahu, B.-H.: A powerful new encoding for tree-based combinatorial optimization problem. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 430–439. Springer, Heidelberg (2004)

    Google Scholar 

  46. Srinivas, N., Deb, K.: Multi-Objective Function Optimization Using Non-Dominated Sorting Genetic Algorithm. Evol. Comput. 2, 221–248 (1995)

    Article  Google Scholar 

  47. Steiner, S., Radzik, T.: Solving the bi-objective minimum spanning tree problem using a k-best algorithm. Tech. Rep. TR-03-06, Department of Comput. Sci., King’s College London (2003)

    Google Scholar 

  48. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  49. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multi objective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003)

    Article  Google Scholar 

  50. Zhou, G., Gen, M.: Genetic algorithm approach on multi-criterion minimum spanning tree problem. Eur. J. Oper. Res. 114, 141–152 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davis-Moradkhan, M., Browne, W. (2010). Evolutionary Algorithms for the Multi Criterion Minimum Spanning Tree Problem. In: Tenne, Y., Goh, CK. (eds) Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10701-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10701-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10700-9

  • Online ISBN: 978-3-642-10701-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics