Reasoning about Weighted Semantic User Profiles through Collective Confidence Analysis: A Fuzzy Evaluation

  • Nima Dokoohaki
  • Mihhail Matskin
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 67)


User profiles are vastly utilized to alleviate the increasing problem of so called information overload. Many important issues of Semantic Web like trust, privacy, matching and ranking have a certain degree of vagueness and involve truth degrees that one requires to present and reason about. In this ground, profiles tend to be useful and allow incorporation of these uncertain attributes in the form of weights into profiled materials. In order to interpret and reason about these uncertain values, we have constructed a fuzzy confidence model, through which these values could be collectively analyzed and interpreted as collective experience confidence of users. We analyze this model within a scenario, comprising weighted user profiles of a semantically enabled cultural heritage knowledge platform. Initial simulation results have shown the benefits of our mechanism for alleviating problem of sparse and empty profiles.


Confidence Fuzzy Inference Semantic User Profiles Personalization Reasoning Uncertainty Evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, Z., van Harmelen, F., Teije, A.T.: Reasoning with Inconsistent Ontologies. In: International Joint Conference on Artificial Intelligence, vol. 19, pp. 454–459. Lawrence Erlbaum Associates Ltd., USA (2005)Google Scholar
  2. 2.
    Klir, G.J., Yuan, B.: Fuzzy sets, Fuzzy Logic, and Fuzzy Systems: selected papers by Zadeh, L.A. World Scientific Publishing Co., Inc., River Edge (1996)Google Scholar
  3. 3.
    Sanchez, E.: Fuzzy Logic and the Semantic Web. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  4. 4.
    Li, Y., Xu, B., Lu, J., Kang, D.: Reasoning with Fuzzy Ontologies. Contexts and Ontologies: Theory, Practice and Applications (2006)Google Scholar
  5. 5.
    Dokoohaki, N., Matskin, M.: Personalizing human interaction through hybrid ontological profiling: Cultural heritage case study. In: Ronchetti, M. (ed.) 1st Workshop on Semantic Web Applications and Human Aspects (SWAHA 2008), in conjunction with Asian Semantic Web Conference 2008, pp. 133–140. AIT epress (2008)Google Scholar
  6. 6.
    EU IST FP7 SMARTMUSEUM project: (last accessed, June 2009)
  7. 7.
    Koch, N.: Software Engineering for Adaptive Hypermedia Systems. PhD thesis, Ludwig-Maximilians University, Munich, Germany (2005)Google Scholar
  8. 8.
    Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles for Personalized Information Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bloedorn, E., Mason, G., Mani, I., MacMillan, T.R.: Machine Learning of User Profiles: Representational Issues. In: Proceedings of the national conference on artificial intelligence, vol. 13, pp. 433–438. John Wiley and Sons Ltd., Chichester (1996)Google Scholar
  10. 10.
    Kobsa, A.: User Modeling: Recent work, prospects and Hazards, Auth. Schneider-Hufschmidt, m. (1993)Google Scholar
  11. 11.
    Weibelzahl, S.: Evaluation of Adaptive Systems: PhD thesis. University of Trier (2003)Google Scholar
  12. 12.
    Dolog, P., Nejdl, W.: Challenges and Benefits of the Semantic Web for User Modelling. In: Proceedings of Adaptive Hypermedia (2003)Google Scholar
  13. 13.
    Dolog, P., Nejdl, W.: Semantic Web Technologies for the Adaptive Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 697–719. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Aroyo, L., Stash, N., Rutledge, L.: Interactive User Modeling for Personalized Access to Museum Collections: The Rijksmuseum Case Study. In: Proc. 11th User Modeling Conference, Greece (2007)Google Scholar
  15. 15.
    Nasraoui, O., Frigui, H., Krishnapuram, R., Joshi, A.: Extracting Web User Profiles Using Relational Competitive Fuzzy Clustering. International journal on artificial intelligence tools 9, PART 4, 509–526 (2000)CrossRefGoogle Scholar
  16. 16.
    Martin-Bautista, M.J., Kraft, D.H., Vila, M.A., Chen, J., Cruz, J.: User profiles and fuzzy logic for web retrieval issues. Soft computing 6(5), 365–372 (2002)zbMATHGoogle Scholar
  17. 17.
    Nefti, S., Meziane, F., Kasiran, K.: A Fuzzy Trust Model for E-Commerce. E-Commerce Technology, CEC (2005)Google Scholar
  18. 18.
    Falcone, R., Pezzulo, G., Castelfranchi, C.A.: Fuzzy Approach to a Belief-Based Trust Computation. In: Falcone, R., Barber, S.K., Korba, L., Singh, M.P. (eds.) AAMAS 2002. LNCS (LNAI), vol. 2631, pp. 73–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Schmidt, S., Steele, R., Dillon, T.S., Chang, E.: Fuzzy trust evaluation and credibility development in multi-agent systems. Journal of Applied Soft Computing (2007)Google Scholar
  20. 20.
    Kohlas, R., Maurer, U.: Confidence Valuation in a Public-Key Infrastructure Based on Uncertain Evidence, pp. 93–112. Springer, Heidelberg (2000)Google Scholar
  21. 21.
    Zhang, Q., Qi, Y., Zhao, J., Hou, D., Niu, Y.: Fuzzy privacy decision for context-aware access personal information. Wuhan University Journal of Natural Sciences (2007)Google Scholar
  22. 22.
    Raj, P.A., Kumar, D.N.: Ranking alternatives with fuzzy weights using maximizing set and minimizing set. Fuzzy Sets and Systems (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nima Dokoohaki
    • 1
  • Mihhail Matskin
    • 2
  1. 1.Department of Electronics, Computer and Software Systems, School of Information and Communications Technology, Department of Information and Computer ScienceRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Department of Information and Computer ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations