A Dynamic Stochastic Model Applied to the Analysis of the Web User Behavior

  • Pablo E. Román
  • Juan D. Velásquez
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 67)


We present a dynamical model of web user behavior based on a mathematical theory of psychological behavior from Usher and McClelland and the random utility model from McFadden. We adapt the probabilistic model to the decision making process that follows each web user when decide which link will continue to browse. Those stochastic models have been fully tested in a variety of neurophysiological studies, and then we base our research on them. The adapted model describes, in probability, the time course that a web user performs for taking the decision to follow a particular hyperlink or to leave the web site. The model has parameter to be fitted based on historical user sessions, the web site structure and content. The advantage of using this point of view is that the web user model is independent of the web site, and then its can predict changes on the web usage based on changes on the web site.


Web User Behavior Stochastic Process Random Utility Model TFIDF Stochastic Equation Stochastic Simulation Web User Session Logit Web User Text Preferences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asmussen, S., Glynn, P.: Stochastic Simulation: Algorithms and Analysis. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  2. 2.
    Berendt, B., Mobasher, B., Spiliopoulou, M., Wiltshire, J.: Measuring the accuracy of sessionizers for web usage analysis. In: Proc. of the Workshop on Web Mining, First SIAM Internat. Conf. on Data Mining, pp. 7–14 (2001)Google Scholar
  3. 3.
    Blum, A., Chan, T.H.H., Rwebangira, M.R.: A random-surfer web-graph model. In: Proceedings of the eigth Workshop on Algorithm Engineering and Experiments and the third Workshop on Analytic Algorithmics and Combinatorics, pp. 238–246. Society for Industrial and Applied Mathematics (2006)Google Scholar
  4. 4.
    Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D.: The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced choice tasks. Psychological Review 4(113), 700–765 (2006)CrossRefGoogle Scholar
  5. 5.
    Bogacz, R., Usher, M., Zhang, J., McClelland, J.: Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. Philosophical Transaction of the Royal Society B 362(1485), 1655–1670 (2007)CrossRefGoogle Scholar
  6. 6.
    Huberman, B., Pirolli, P., Pitkow, J., Lukose, R.M.: Strong regularities in world wide web surfing. Science 280(5360), 95–97 (1998)CrossRefGoogle Scholar
  7. 7.
    Velásquez, J.D., Palade, V.: Adaptive web sites: A knowledge extraction from web data approach. IOS Press, Amsterdam (2008)Google Scholar
  8. 8.
    Kashima, H., Koyanagi, T.: Kernels for semi-structured data. In: ICML 2002: Proceedings of the Nineteenth International Conference on Machine Learning, pp. 291–298. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  9. 9.
    Kosala, R., Blockeel, H.: Web mining research: A survey. SIGKDD Explorations: Newsletters of the special Interest Group (SIG) on Knowledge Discovery and Data Mining 1(2), 1–15 (2000)Google Scholar
  10. 10.
    Laming, D.R.J.: Information theory of choice reaction time. Wiley, Chichester (1968)Google Scholar
  11. 11.
    Luce, R., Suppes, P.: Preference, utility and subjective probability. In: luce, Bush, Galanter (eds.) Handbook of Mathematical Psychology III, pp. 249–410. Wiley, Chichester (1965)Google Scholar
  12. 12.
    Manning, C.D., Schutze, H.: Foundation of Statistical Natural Language Processing. The MIT Press, Cambridge (1999)Google Scholar
  13. 13.
    McFadden, D.: Is conditional logit analysis of qualitative choice behavior. In: Zarembka (ed.) Frontiers in Econometrics. Academic Press, London (1973)Google Scholar
  14. 14.
    Miller, R.C., Bharat, K.: Sphinx: A framework for creating personal, site-specific web crawlers. In: Proceedings of the Seventh International World Wide Web Conference (WWW7), pp. 119–130 (1998)Google Scholar
  15. 15.
    Newey, W., McFadden, D.: Large sample estimation and hypothesis testing. In: Handbook of Econometrics, vol. 4, pp. 2111–2245. North Holland, Amsterdam (1994)Google Scholar
  16. 16.
    Pirolli, P.: Power of 10: Modeling complex information-seeking systems at multiple scales. Computer 42, 33–40 (2009)CrossRefGoogle Scholar
  17. 17.
    Ratcliff, R.: A theory of memory retrieval. Psychological Review (83), 59–108 (1978)Google Scholar
  18. 18.
    Brin, S., Page, L.S.: The anatomy of a large-scale hypertextual web search engine. In: Computer Networks and ISDN Systems, pp. 107–117 (1998)Google Scholar
  19. 19.
    Schall, J.D.: Neural basis of deciding, choosing and acting. National Review of Neuroscience 2(1), 33–42 (2001)CrossRefGoogle Scholar
  20. 20.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.: Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 2(1), 12–23 (2000)CrossRefGoogle Scholar
  21. 21.
    Stone, M.: Models for choice reaction time. Psychometrika (25), 251–260 (1960)Google Scholar
  22. 22.
    Tomlin, J.A.: A new paradigm for ranking pages on the world wide web, www 2003. In: Computer Networks and ISDN Systems, Budapest, Hungary, May 20-24, pp. 107–117 (1998)Google Scholar
  23. 23.
    Usher, M., McClelland, J.: The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review 2(1), 550–592 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pablo E. Román
    • 1
  • Juan D. Velásquez
    • 1
  1. 1.University of Chile, República 701 Santiago 

Personalised recommendations