A Skeletal Parallel Framework with Fusion Optimizer for GPGPU Programming

  • Shigeyuki Sato
  • Hideya Iwasaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5904)

Abstract

Although today’s graphics processing units (GPUs) have high performance and general-purpose computing on GPUs (GPGPU) is actively studied, developing GPGPU applications remains difficult for two reasons. First, both parallelization and optimization of GPGPU applications is necessary to achieve high performance. Second, the suitability of the target application for GPGPU must be determined, because whether an application performs well with GPGPU heavily depends on its inherent properties, which are not obvious from the source code. To overcome these difficulties, we developed a skeletal parallel programming framework for rapid GPGPU application developments. It enables programmers to easily write GPGPU applications and rapidly test them because it generates programs for both GPUs and CPUs from the same source code. It also provides an optimization mechanism based on fusion transformation. Its effectiveness was confirmed experimentally.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cambridge (1989)MATHGoogle Scholar
  2. 2.
    Wadler, P.: Deforestation: Transforming programs to eliminate trees. In: Ganzinger, H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 344–358. Springer, Heidelberg (1988)Google Scholar
  3. 3.
    Chin, W.: Safe Fusion of Functional Expressions. In: 7th ACM Conference on Lisp and Functional Programming, pp. 11–20. ACM Press, New York (1992)CrossRefGoogle Scholar
  4. 4.
    Gill, A., Launchbury, J., Peyton Jones, S.L.: A Short Cut to Deforestation. In: Conference on Functional Programming Languages and Computer Architecture, pp. 223–232 (1993)Google Scholar
  5. 5.
    Hu, Z., Iwasaki, H., Takeichi, M.: An Accumulative Parallel Skeleton for All. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 83–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Iwasaki, H., Hu, Z.: A New Parallel Skeleton for General Accumulative Computations. International Journal of Parallel Programming 32, 398–414 (2004)CrossRefGoogle Scholar
  7. 7.
    Emoto, K., Matsuzaki, K., Hu, Z., Takeichi, M.: Domain-Specific Optimization Strategy for Skeleton Programs. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 705–714. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Kuchen, H.: A Skeleton Library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 85–124. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible Skeletal Programming with eSkel. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 761–770. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Falcou, J., Sérot, J., Chateau, T., Lapreste, J.T.: QUAFF: efficient C++ design for parallel skeletons. Parallel Comput. 32(7-8), 604–615 (2006)CrossRefGoogle Scholar
  11. 11.
    Matsuzaki, K., Emoto, K., Iwasaki, H., Hu, Z.: A Library of Constructive Skeletons for Sequential Style of Parallel Programming. In: 1st International Conference on Scalable Information Systems, vol. 13 (2006)Google Scholar
  12. 12.
    Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck, I., Woolley, C., Lefohn, A.: GPGPU: General-Purpose Computation on Graphics Hardware. In: ACM SIGGRAPH 2004 Course Notes (2004)Google Scholar
  13. 13.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware. Comput. Graph. Forum 26(1), 80–113 (2007)CrossRefGoogle Scholar
  14. 14.
    Bird, R.: Lecture Notes on Theory of Lists. STOP Summer School on Constructive Algorithmics (1987)Google Scholar
  15. 15.
    Skillicorn, D.B.: The Bird-Meertens Formalism as a Parallel Model. In: Software for Parallel Computation. NATO ASI Series F, vol. 106, pp. 120–133 (1993)Google Scholar
  16. 16.
    Gorlatch, S.: Systematic Efficient Parallelization of Scan and Other List Homomorphisms. In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par 1996. LNCS, vol. 1124, pp. 401–408. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    NVIDIA Corporation: NVIDIA CUDATM  Programming Guide Version 2.2 (2009)Google Scholar
  18. 18.
    Ålind, M., Eriksson, M.V., Kessler, C.W.: BlockLib: A Skeleton Library for Cell Broadband Engine. In: 1st International Workshop on Multicore Software Engineering, pp. 7–14 (2008)Google Scholar
  19. 19.
    Harris, M.: Optimizing Parallel Reduction in CUDA. Technical report, NVIDIA Corporation (2007), http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
  20. 20.
    Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards Parallel Programming by Transformation: The FAN Skeleton Framework. Parallel Algorithms Appl. 16, 87–121 (2001)MATHMathSciNetGoogle Scholar
  21. 21.
    Grelck, C., Scholz, S.: Merging compositions of array skeletons in SAC. Parallel Comput. 32(7-8), 507–522 (2006)CrossRefGoogle Scholar
  22. 22.
    Scholz, S.B.: Single Assignment C: efficient support for high-level array operations in a functional setting. J. Funct. Program. 13(6), 1005–1059 (2003)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Matsuzaki, K., Kakehi, K., Iwasaki, H., Hu, Z., Akashi, Y.: A Fusion-Embedded Skeleton Library. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 644–653. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Kapasi, U., Dally, W.J., Rixner, S., Owens, J.D., Khailany, B.: The Imagine Stream Processor. In: 20th IEEE International Conference on Computer Design, pp. 282–288 (2002)Google Scholar
  25. 25.
    Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: Stream Computing on Graphics Hardware. ACM Trans. Graph. 23, 777–786 (2004)CrossRefGoogle Scholar
  26. 26.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: 6th Symposium on Operating System Design and Implementation, pp. 137–150 (2004)Google Scholar
  27. 27.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  28. 28.
    He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: A MapReduce Framework on Graphics Processors. In: 17th International Conference on Parallel Architectures and Compilation Techniques, pp. 260–269 (2008)Google Scholar
  29. 29.
    Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: A Programming Model for Heterogeneous Multi-Core Systems. In: 13th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 287–296 (2008)Google Scholar
  30. 30.
    Lee, S., Chakravarty, M.M.T., Grover, V., Keller, G.: GPU Kernels as Data-Parallel Array Computations in Haskell. In: Workshop on Exploiting Parallelism using GPUs and other Hardware-Assisted Methods (2009)Google Scholar
  31. 31.
    Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: A Compiler Framework for Automatic Translation and Optimization. In: 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 101–110 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shigeyuki Sato
    • 1
  • Hideya Iwasaki
    • 1
  1. 1.Department of Computer ScienceThe University of Electro-Communications 

Personalised recommendations