Advertisement

Biosystems and Bioinspired Systems

  • Octavian Iordache
Part of the Understanding Complex Systems book series (UCS)

Abstract

Artificial genetic codes, neural networks and neural codes are presented as theoretical frames for evolutionary computation and biomimetic devices.

Models for genetic code evolution offer suggestions for chemical and biochemical inspired computations as for instance artificial chemistry or chemical programming.

Neural networks architecture issues require evolvability as outlined by growing neural nets or by protein based neural networks.

The significance of neural coding, symbolic connectionist hybrids, neural binding, temporal synchrony studies for unconventional computing and neurocognitive devices is highlighted.

Evolutionary circuits based on electrochemical filaments are proposed. The perspectives of evolvable circuits based on bio-molecules properties, are evaluated.

Case studies show how technological innovation should find the right moment to free the artificial system designer from the detailed experimental data of real systems.

Keywords

Neural Network Genetic Code Evolutionary Computation Categorical Product Evolvable Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A., Costello, B.D.L.: Experimental logical gates in a reaction-diffusion medium: The XOR gate and beyond. Phys. Rev. E 197(22), 344–352 (2002)Google Scholar
  2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  3. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland Publishing, NY (1994)Google Scholar
  4. Ardell, D.H., Sella, G.: No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Philos. Trans. R Soc. London B Biol. Sci. 357(1427), 1625–1642 (2002)CrossRefGoogle Scholar
  5. Austin, J.: Distributed associative memories for high speed symbolic reasoning. International Journal on Fuzzy Sets and System 82(2), 223–233 (1996)CrossRefGoogle Scholar
  6. Baeck, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: Comments of the history and current state. IEEE Trans. Evolutionary Computation 1, 3–17 (1997)CrossRefGoogle Scholar
  7. Balakrishnan, K., Honavar, V.: Evolutionary design of neural architectures-A preliminary taxonomy and guide to literature. Department of Computer Science Technical Report 95-01 (1995)Google Scholar
  8. Banzhaf, W.: Self-replicating sequences of binary numbers, foundations I. General, Biological Cybernetics 69, 269–274 (1993)zbMATHCrossRefGoogle Scholar
  9. Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1993)zbMATHGoogle Scholar
  10. Bedau, M., McCaskill, J.S., Packard, N.H., Rasmussen, S., Adami, C., Green, D.G., Ikegami, T., Kaneko, K., Ray, T.S.: Open problems in artificial life. Artificial Life 6, 363–376 (2000)CrossRefGoogle Scholar
  11. Benyo, B., Biro, J.C., Benyo, Z.: Codes in the codons: Construction of a codon/amino acid periodic Table and a study of the Nature of specific nucleic acid-protein interactions. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, pp. 2860–2863 (2004)Google Scholar
  12. Bird, J., Layzell, P.: The Evolved Radio and its Implications for Modeling the Evolution of Novel Sensors. In: Proceedings of the Congress on Evolutionary Computation, CEC 2002, pp. 1836–1841 (2002)Google Scholar
  13. Birge, R.: Protein-based computers. Sci. Am. 272, 90–95 (1995)CrossRefGoogle Scholar
  14. Bradley, D.W., Ortega-Sanchez, C., Tyrrel, A.M.: Embryonics+Immunotronics: A bioinspired approach to fault tolerances. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware (2000)Google Scholar
  15. Bray, D.: Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995)CrossRefGoogle Scholar
  16. Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Networks 7, 1065–1081 (1994)zbMATHCrossRefGoogle Scholar
  17. Caporale, L.H.: Is there a higher level genetic code that directs evolution? Molecular and Cellular Biochemistry 64, 5–13 (1984)CrossRefGoogle Scholar
  18. Carbone, A., Seeman, N.C.: Circuits and programmable self-assembling DNA structures. PNAS 99, 12577–12582 (2002a)MathSciNetCrossRefGoogle Scholar
  19. Carbone, A., Seeman, N.C.: A route to fractal DNA assembly. Natural Computing 1, 469–480 (2002b)zbMATHMathSciNetCrossRefGoogle Scholar
  20. Cariani, P.: On the Design of Devices with Emergent Semantic Functions. Ph D Dissertation, Binghamton University (1989)Google Scholar
  21. Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Systems Research 10, 19–33 (1993)CrossRefGoogle Scholar
  22. Cariani, P.: Towards an evolutionary semiotics: the emergence of new sign functions in organisms and devices. In: Van de Vijver, G., Salthe, S., Delpos, M. (eds.) Evolutionary Systems, pp. 359–377. Kluwer, Dordrecht (1998)Google Scholar
  23. Cariani, P.: Symbols and dynamics in the brain. Biosystems 60, 59–83 (2001)CrossRefGoogle Scholar
  24. Carpenter, G., Grossberg, S.: ART2: Selforganization of stable category recognition codes for analog input patterns. Applied Optics 26, 4919–4930 (1987)CrossRefGoogle Scholar
  25. Cheung, P., Berlin, A., Biegelsen, D., Jackson, W.: Batch fabrication of pneumatic valve arrays by combining MEMS with PCB technology. In: Symposium on Micro-Mechanical Systems, ASME, Dallas, TX, 62, pp. 39–46 (1997)Google Scholar
  26. Chomsky, N.: Cartesian Linguistics. Harper & Row, New York (1966)Google Scholar
  27. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)Google Scholar
  28. Damasio, A.R.: The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989)CrossRefGoogle Scholar
  29. Danckwerts, H.J., Neubert, D.: Symmetries of genetic code-doublets. J. Mol. Evol. 5, 327–332 (1975)CrossRefGoogle Scholar
  30. Dasgupta, D., McGregor, D.R.: Designing Neural Networks using the Structured Genetic Algorithm. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN), Brighton, UK (1992)Google Scholar
  31. Dewar, R.C.: Informational theory explanation of the fluctuation theorem, maximum entropy production, and self-organized criticality in non-equilibrium stationary states. J. Phys. A 36, 631–641 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  32. Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A Generic Framework for the Engineering of Self-Adaptive and Self-Organising Systems. Technical Report CS-TR-1018, School of Computing Science, University of Newcastle (2007)Google Scholar
  33. Dittrich, P.: The Bio-Chemical Information Processing Metaphor as a Programming Paradigm for Organic Computing. In: ARCS Workshops, pp. 95–99 (2005)Google Scholar
  34. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries-a review. Artificial Life 7(3), 225–275 (2001)CrossRefGoogle Scholar
  35. Doursat, R.: A Contribution to the Study of Representations in the Nervous System and in Artificial Neural Networks. Ph D Thesis, University Paris (1991)Google Scholar
  36. Doursat, R.: Of tapestries, ponds and RAIN. Toward fine-grain mesoscopic neurodynamics in excitable media. In: International Workshop on nonlinear brain dynamics for computational intelligence. Salt Lake City, USA (2007)Google Scholar
  37. Doursat, R., Bienenstock, E.: Neocortical self-structuration as a basis for learning. In: 5th International Conference on Development and Learning, ICDL 2006, Indiana University, Bloomington, IN (2006)Google Scholar
  38. Eigen, M., Schuster, P.: The hypercycle a principle of natural self-organization. Springer, Berlin (1979)Google Scholar
  39. Eigen, M., Winkler-Oswatitsch, R.: Transfer-RNA: The early adaptor. Naturwiss 68, 217–228 (1981)CrossRefGoogle Scholar
  40. Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)CrossRefGoogle Scholar
  41. Elman, J.L.: Learning and development in neural networks:The importance of starting small. Cognition 48, 71–99 (1993)CrossRefGoogle Scholar
  42. Erickson, D., Li, D.: Integrated microfluidic devices. Analytica Chimica Aca. 507, 11–26 (2004)CrossRefGoogle Scholar
  43. Findley, G.L., Findley, A.M., McGlynn, S.P.: Symmetry characteristics of the genetic code. Proc. Natl. Acad. Sci. USA 79, 7061–7065 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  44. Fodor, J.A., Pylyshyn, Z.: Connectionism and cognitive architecture: a critical analysis. Cognition 28(1/2), 3–71 (1988)CrossRefGoogle Scholar
  45. von Foerster, H.: What is memory that it may have hindsight and foresight as well? In: Bogoch, S. (ed.) The Future of the Brain Sciences, pp. 19–65, 89–95. Plenum Press, New York (1969)Google Scholar
  46. Forcey, S.: 2-fold operads Young diagrams and dendritic growth, University Research Symposium, Tennessee State University (2008)Google Scholar
  47. Freeman, W.J.: Neurodynamics. An exploration of mesoscopic brain dynamics. Springer, London (2000)zbMATHGoogle Scholar
  48. Fritzke, B.: Growing cell structure-a self organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)CrossRefGoogle Scholar
  49. Geard, N., Wiles, J.: Structure and dynamics of a gene network model incorporating small RNAs. In: IEEE Congress on Evolutionary Computation, pp. 199–206 (2003)Google Scholar
  50. Goranovic, G., Rasmussen, S., Nielsen, P.E.: Artificial life forms in microfluidic systems. In: Proceedings microTAS 2006, Tokyo, Japan, vol. 2, p. 1408 (2006)Google Scholar
  51. Gould, S.J.: The paradox of the first tier: an agenda for paleobiology. Paleobiology 11, 2–12 (1985)Google Scholar
  52. Halford, G.S., Wilson, W.H., Phillips, S.: Processing capacity defined by relational complexity. Implications for comparative, developmental and cognitive psychology. Behavioural and Brain Sciences 21(6), 803–831 (1998)Google Scholar
  53. Harding, S.: Evolution in Materio. Ph D Thesis University of York (2005)Google Scholar
  54. Haronian, D., Lewis, A.: Elements of a unique bacteriorodopsib neural network architecture. Applied Optics 30, 597–608 (1991)CrossRefGoogle Scholar
  55. Hartman, H.: Speculations on the evolution of the genetic code. Origins of Life 6, 423–427 (1975)CrossRefGoogle Scholar
  56. Healy, M.J., Caudell, T.P.: Ontologies and worlds in category theory: Implications for neural systems. Axiomathes 16(1), 165–214 (2006)CrossRefGoogle Scholar
  57. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of finite-state machines. PNAS USA 89, 383–387 (1992)CrossRefGoogle Scholar
  58. Hummel, J.E., Biederman, I.: Dynamic binding in a neural network for shape recognition. Psychological Review 99, 480–517 (1992)CrossRefGoogle Scholar
  59. Hummel, J.E., Choplin, J.M.: Toward an integrated account of reflexive and reflective reasoning. In: Gleitman, L., Joshi, A.K. (eds.) Proceedings of the Twenty Second Annual Conference of the Cognitive Science Society, pp. 232–237. LEA, Mahwah (2000)Google Scholar
  60. Hummel, J.E., Holyoak, K.J.: Distributed representation of structure. A theory of analogical access and mapping. Psychological Review 104, 427–466 (1997)CrossRefGoogle Scholar
  61. Inhelder, B., Piaget, J.: The Growth of Logical Thinking from Childhood to Adolescence. Basic Books, New York (1958)CrossRefGoogle Scholar
  62. Iordache, O.: Evolvable Designs of Experiments Applications for Circuits. J. Wiley VCH, Weinheim (2009)CrossRefGoogle Scholar
  63. Jacob, F., Monod, J.: On the regulation of gene activity. Cold Spring Harbor Symp. Quant. Biol. 26, 193–211 (1961)Google Scholar
  64. Jimenez-Montano, M.A.: Protein evolution drives the evolution of the genetic code and vice versa. Biosystems 54, 47–64 (1999)CrossRefGoogle Scholar
  65. Jimenez-Montano, M.A., de la Mora-Basanez, R., Poschel, T.: Poschel T The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. Biosystems 39, 117–125 (1996)CrossRefGoogle Scholar
  66. Kargupta, H.: A striking property of genetic-code like transformations. Complex Systems 13, 1–32 (2001)zbMATHMathSciNetGoogle Scholar
  67. Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback & boundary. Rendiconti del Circolo Matematico di Palermo Serie II, Suppl. 63, 123–156 (2000)Google Scholar
  68. Keller, R., Banzhaf, W.: The evolution of genetic code in genetic programming. In: Proc. Genetic and Evolutionary Computation Conf., pp. 077–1082. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  69. Kitano, H.: Designing neural network using genetic algorithm with graph generation system. Complex Systems 4, 461–476 (1990)zbMATHGoogle Scholar
  70. Koonin, E.V., Novozhilov, A.S.: Origin and evolution of the genetic code: The universal enigma. IUBMB Life 61(2), 99–111 (2009)CrossRefGoogle Scholar
  71. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  72. Kuhn, H., Kuhn, C.: Diversified world: drive of life’s origin? Angew. Chem. International 42, 262–266 (2003)CrossRefGoogle Scholar
  73. Kuhn, H., Waser, J.: Molecular self-organization and the origin of life. Angew. Chem. Int. Ed. Engl. 20, 500–520 (1981)CrossRefGoogle Scholar
  74. Kuhn, H., Waser, J.: Hypothesis on the origin of genetic code. FEBS Letters 352, 259–264 (1994)CrossRefGoogle Scholar
  75. Kuhnert, L., Algadze, K.I., Krinsky, V.I.: Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989)CrossRefGoogle Scholar
  76. Lehn, J.M.: Supramolecular chemistry- from molecular information towards self-organization and complex matter. Reports on Progress in Physics 67, 249–265 (2004)CrossRefGoogle Scholar
  77. Lindenmayer, A.: Mathematical models for cellular interaction in development, I, II. J. Theor. Biol. 18, 280–315 (1968)CrossRefGoogle Scholar
  78. Lovell, C.J., Jones, G., Zauner, K.P.: Autonomous Experimentation: Coupling Machine Learning with Computer Controlled Microfluidics. In: ELRIG Drug Discovery, Liverpool, September 7-8 (2009)Google Scholar
  79. Maass, W.: Liquid computing. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 507–516. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  80. Macias, N.J.: The PIG paradigm: The design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture. In: Proceedings First NASA/DoD Workshop on Evolvable Hardware (1999)Google Scholar
  81. Mahalik, N.P.: Micromanufacturing and Nanotechnology. Springer, New York (2005)Google Scholar
  82. Mallot, H.A.: Spatial cognition: behavioral competences, neural mechanisms and evolutionary scaling. Kognitionwissenchaft 8, 40–48 (2006)CrossRefGoogle Scholar
  83. von der Malsburg, C.: Am I thinking assemblies? In: Palm, G., Aertsen, A. (eds.) Brain theory, pp. 161–176. Spinger, NY (1986)Google Scholar
  84. von der Malsburg, C.: The correlation theory of brain function. In: Domany, E., van Hemmen, J.L., Schulten, K. (eds.) Models of Neural Networks II: Temporal Aspects of Coding and Information Processing in Biological Systems, pp. 95–119. Springer, New York (1994)Google Scholar
  85. von der Malsurg, C.: Vision as an exercise in organic computing. GI Jahrestagung (2), 631–635 (2004)Google Scholar
  86. Mange, D., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P., Piguet, C.: Embryonics: A new methodology for designing Field-Programmable Gate Arrays with Self-Repair and Self-Replicating Properties. IEEE Transactions on VLSI Systems 6(3), 387–399 (1998)CrossRefGoogle Scholar
  87. Mange, D., Stauffer, A., Petraglio, E., Tempesti, E.: Self-replicating loop with universal construction. Physica D 191, 178–192 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  88. Mann, S. (ed.): Biomimetic Materials Chemistry. VCH, Weinheim (1996)Google Scholar
  89. Matsumaru, N., Dittrich, P.: Organization-oriented chemical programming for the organic design of distributed computing systems. In: Proc. of BIONETICS 2006, Cavalese, December 11-13. IEEE, Los Alamitos (2006)Google Scholar
  90. Miller, J.F.: Evolution in materio. In: International Conference on Evolvable Systems, Prague, Czech Republic (2008)Google Scholar
  91. Miller, J.F., Downing, K.: Evolution in materio: Looking beyond the silicon box. In: Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, pp. 167–176. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  92. Müller-Schloer, C., von der Malsburg, C., Wurtz, R.P.: Organic Computing. Informatik Spektrum (27), 332–336 (2004)Google Scholar
  93. Nikolajewa, S., Friedel, M., Beyer, A., Wilhelm, T.: The new classification scheme of the genetic code, tRNA usage and early code evolution. J. Bioinf. Comput. Biol. 4, 609–620 (2006)CrossRefGoogle Scholar
  94. Nolfi, S., Parisi, D.: Genotypes for Neural Networks. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995a)Google Scholar
  95. Nolfi, S., Parisi, D.: Evolving artificial neural networks that develop in time. In: Moran, F., Moreno, A., Merelo, J.J., Chacon, P. (eds.) Advance in Artificial Life, Proceeding of the third European Conference on Artificial Life. Springer, Heidelberg (1995b)Google Scholar
  96. Nolfi, S., Parisi, D.: Neural networks in an artificial life perspective. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D. (eds.) Proceedings of the 7th International Conference on Artificial Neural Networks (ICANN 1997), pp. 733–738. Springer, Berlin (1997)Google Scholar
  97. Nolfi, S., Tani, J.: Extracting regularities in space and time through a cascade of prediction networks: The case of a mobile robot navigating in a structured environment. Connection Science 2(11), 129–152 (1999)Google Scholar
  98. van Noort, D., Wagler, P., McCaskill, J.S.: The role of microreactors in molecular computing. Smart Mater. Struct. 11, 756–760 (2002)CrossRefGoogle Scholar
  99. Patel, A.: The triple genetic code had a doublet predecessor. J.Theor. Biol. 233, 527–532 (2005)CrossRefGoogle Scholar
  100. Pato, R.C., Toh, C.-H.: Computational aspects of protein functionality. Comp. Funct. Genom. 5, 85–90 (2004)CrossRefGoogle Scholar
  101. Pattee, H.H.: Evolving self-reference: matter, symbols, and semantic closure. Communication and Cognition-Artificial Intelligence 12(1-2), 9–28 (1995)Google Scholar
  102. Pattee, H.H.: Causation, control and the evolution of complexity. In: Anderson, P.B., et al. (eds.) Downward Causation, pp. 63–77. Aarhus University Press, Aarhus (2000)Google Scholar
  103. Perlwitz, M.D., Burks, C., Waterman, M.S.: Pattern Analysis of the Genetic Code. Advances in Applied Mathematics 9, 7–21 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  104. Pietzowski, A., Satzger, B., Trumler, W., Ungerer, T.: A bioinspired approach for self-protecting in organic middleware with artificial antibodies. In: de Meer, H., Sterbenz, J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124, pp. 202–215. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  105. Plate, T.: Holographic Reduced Representations. IEEE Transactions of Neural Networks 6, 623–641 (1995)CrossRefGoogle Scholar
  106. Pollack, J.B.: Recursive Distributed Representations. Artificial Intelligence 46, 77–105 (1990)CrossRefGoogle Scholar
  107. Prigogine, I.: From Being into Becoming. W. H. Freeman, San Francisco (1980)Google Scholar
  108. Quick, T., Dautenhahn, K., Nehaniv, C., Roberts, G.: The Essence of Embodiment: A Framework for Understanding and Exploiting Structural Coupling Between System and Environment. In: Proc. Third International Conference on Computing Anticipatory Systems, Liège, Belgium (CASYS 1999) (1999)Google Scholar
  109. Rasmussen, S., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F., Bedau, M.A.: Transition from nonliving to living matter. Science 303, 963–965 (2004)CrossRefGoogle Scholar
  110. Rocha, L.M.: Artificial semantically closed objects, Communication and Cognition. Artificial Intelligence 12(1-2), 63–90 (1995)MathSciNetGoogle Scholar
  111. Rocha, L.M.: Evidence Sets and Contextual Genetic Algorithms: Exploring Uncertainty, Context and Embodiment in Cognitive and Biological Systems, Ph.D. Dissertation, Binghamton University (1997)Google Scholar
  112. Ronneberg, T., Landweber, L.F., Freeland, S.J.: Testing a biosynthetic theory of the genetic code: fact or artifact? PNAS 97(25), 13690–13695 (2000)CrossRefGoogle Scholar
  113. Schmajuk, N.A., Thieme, A.D.: Purposive behavior and cognitive mapping: An adaptive neural network. Biological Cybernetics 67, 165–174 (1992)zbMATHCrossRefGoogle Scholar
  114. Schrauwen, B., Verstraeten, D., van Campenhout, J.: An overview of reservoir computing theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007)Google Scholar
  115. Shastri, L., Ajjanagadde, V.: From simple associations to systematic reasoning: A connectionist encoding of rules, variables and dynamic bindings using temporal synchrony. Behavioral and Brain Sciences 16(3), 417–493 (1993)CrossRefGoogle Scholar
  116. Siegmund, E., Heine, B., Schulmeyer, P.: Molecular electronics: The first steps towards a new technology. Int. J. of Electronics 69, 145–152 (1990)CrossRefGoogle Scholar
  117. Spiro, P.A., Parkinson, J.S., Othmer, H.G.: A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 94, 7263–7268 (1997)CrossRefGoogle Scholar
  118. Suzuki, H., Sawai, H.: Chemical genetic algorithms-Coevolution between codes and code translation. In: Artificial Life VIII, pp. 164–172. MIT Press, Cambridge (2002)Google Scholar
  119. Tangen, U., Wagler, P.F., Chemnitz, S., Goranovic, G., Maeke, T., McCaskill, J.S.: An electronically controlled microfluidics approach towards artificial cells. Complexus 3, 48–57 (2006)CrossRefGoogle Scholar
  120. Taylor, E.G., Hummel, J.E.: Finding similarity in a model of relational reasoning. Cognitive Systems Research 10, 229–239 (2009)CrossRefGoogle Scholar
  121. Taylor, T.: Creativity in evolution: Individuals, Interactions and Environments. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems. Morgan Kaufmann, San Fransisco (2002)Google Scholar
  122. Thompson, A.: Hardware Evolution: Automatic design of electronic circuits in reconfigurable hardware by artificial evolution. Springer, Heidelberg (1998)Google Scholar
  123. Trifonov, E.N.: Elucidating sequence codes. Three codes for evolution. Annals of the NY. Acad. Sci. 870, 330–338 (1999)CrossRefGoogle Scholar
  124. Trifonov, E.N.: Consensus temporal order of amino acids and evolution of the triplet code. Gene 261, 139–151 (2000)CrossRefGoogle Scholar
  125. Trullier, O., Meyer, J.A.: Biomimetic Navigation Models and Strategies in Animats. AI Commun. 10(2), 79–92 (1997)Google Scholar
  126. von Uexküll, J.: Theoretische Biologie. Frankfurt a. M.: Suhrkamp Taschenbuch Wissenschaft, xxiv+378 (1973)Google Scholar
  127. Verpoorte, E., de Rooij, N.F.: Microfluidics meets MEMS. Proc. of the IEEE. 91, 930–953 (2003)CrossRefGoogle Scholar
  128. Virgo, N., Harvey, I.: Adaptive growth processes: a model inspired by Pask’s ear. In: Bullock, S., Noble, J., Watson, R.A., Bedau, M.A. (eds.) Proceedings of the Eleventh International Conference on Artificial Life, pp. 656–661. MIT Press, Cambridge (2008)Google Scholar
  129. Vsevolodov, N.: Biomolecular Electronics, an Introduction via Photosensitive Proteins. Birkhaeuser, Boston (1998)Google Scholar
  130. Zachary, W., Le Mentec, J.C.: Incorporating metacognitive capabilities in synthetic cognition. In: Proceedings of The Ninth Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL, pp. 513–521 (2000)Google Scholar
  131. Weberndorfer, G., Hofacker, I.L., Stadler, P.F.: On the evolution of primitive genetic codes. Orig. Life Evol. Biosph. 33(4-5), 491–514 (2003)CrossRefGoogle Scholar
  132. Wilhelm, T., Nikolajewa, S.L.: A new classification scheme of the genetic code. J. Mol. Evol. 59, 598–605 (2004)CrossRefGoogle Scholar
  133. Wilson, H.W., Halford, G.S.: Robustness of Tensor Product networks using distributed representations. In: Proceedings of the Fifth Australian Conference on Neural Networks (ACNN 1994), pp. 258–261 (1994)Google Scholar
  134. Winfree, E.: Algorithmic self-assembly of DNA: Theoretical motivations and 2d assembly experiments. Journal of Biomolecular Structure & Dynamics 11, 263–270 (2000)Google Scholar
  135. Wong, J.T.: A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA 72, 1909–1912 (1975)CrossRefGoogle Scholar
  136. Wu, H.L., Bagby, S., van der Elsen, J.M.: Evolution of the genetic triplet code via two types of doublet codons. J. Mol. Evol. 61, 54–64 (2005)CrossRefGoogle Scholar
  137. Yao, X.: Evolving Artificial Neural Networks. Proceeding of the IEEE 87(9), 1423–1447 (1999)CrossRefGoogle Scholar
  138. Zauner, K.P.: Molecular Information Technology. Critical Reviews in Solid State and Material Sciences 30(1), 33–69 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Octavian Iordache

    There are no affiliations available

    Personalised recommendations