Skip to main content

Introduction

  • Chapter

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Complexity and emergence are introduced here in relation with the self-organization of systems in levels of reality.

Evolvability defined as the ability to evolve is the projected way to confront and surpass the successive levels of complexity. Polystochastic models allow refocusing from adaptable to evolvable, from a low dimensional to a higher dimensional insight.

Significant concepts for evolvability as level of reality, circularity, semantic closure, functional circle, circular schema and integrative closure are presented.

The correlation with organic computing or autonomic computing research areas is highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami, C.: What is complexity? Bioessays 24(12), 1085–1094 (2002)

    Article  Google Scholar 

  • Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S., Adami, C., Green, D.G., Ikegami, T., Kaneko, K., Ray, T.S.: Open problems in artificial life. Artificial Life 6, 363–376 (2000)

    Article  Google Scholar 

  • Bonabeau, E., Desalles, J.L.: Detection and Emergence. Intellectica 2(25), 85–94 (1997)

    Google Scholar 

  • Boschetti, F., Prokopenko, M., Macreadie, I., Grisogono, A.: Defining and detecting emergence in complex networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 573–580. Springer, Heidelberg (2005)

    Google Scholar 

  • Cariani, P.: On the Design of Devices with Emergent Semantic Functions. Ph D Dissertation, Binghamton University (1989)

    Google Scholar 

  • Cariani, P.: Emergence and Artificial Life. In: Langton, C.G., Taylor, J., Farmer, D., Rasmussen, S. (eds.) Artificial Life II, vol. X, pp. 775–798. Addison Wesley, Redwood City (1992)

    Google Scholar 

  • Cariani, P.: Symbols and dynamics in the brain. Biosystems 60, 59–83 (2001)

    Article  Google Scholar 

  • De Wolf, T., Holvoet, T.: Emergence and self-organization: a statement of similarities and differences. In: Proceedings of the Second International Workshop on Engineering and Self-Organizing Applications, New York, USA, pp. 96–110 (2004)

    Google Scholar 

  • Edelman, G.M.: Neural Darwinism: the theory of neuronal group selection. Basic Books, New York (1987)

    Google Scholar 

  • Emmeche, C.: Closure, Emergence, Semiosis and Life: The Same Idea? In: Chandler, J.L.R., Van de Vijveir, G. (eds.) Closure: Emergent Organizations and their Dynamics. Annals of the New York Academy of Science, vol. 901 (2000)

    Google Scholar 

  • Farmer, D., Belin, A.: Artificial Life: The Coming Evolution. In: Langton, C.G., Taylor, J., Farmer, D., Rasmussen, S. (eds.) Artificial Life II. Addison Wesley, Redwood City (1992)

    Google Scholar 

  • Goldstein, J.: Emergence as a construct: History and issues. Emergence 1(1), 49–72 (1999)

    Article  Google Scholar 

  • Hartman, N.: Der Aufbau der realen Welt.Grundriss der allgemeinen Kategorienlehre. Walter de Gruyter, Berlin (1940)

    Google Scholar 

  • Hartmann, N.: The new ways of ontology. Greenwood Press, Westport (1952)

    Google Scholar 

  • Hoffmeyer, J.: Signs of Meaning in the Universe. Indiana University Press, Bloomington (1997)

    Google Scholar 

  • Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology. Technical Report, IBM Research (2001)

    Google Scholar 

  • Iordache, O.: Polystochastic Models in Chemical Engineering. VNU Science Press, Utrecht (1987)

    Google Scholar 

  • Iordache, O.: Evolvable Designs of Experiments Applications for Circuits. J. Wiley VCH, Weinheim (2009)

    Book  Google Scholar 

  • Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and Complexity. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)

    Google Scholar 

  • Lee, E.A.: Computing foundations and practice for cyber-physical systems: A preliminary report. Tech Report Univ of California Berkeley/EECS-2007-72 (2007)

    Google Scholar 

  • Luhmann, N.: Social Systems. Stanford University Press, California (1995)

    Google Scholar 

  • Mainzer, K.: Thinking in complexity, the complex dynamics of matter, mind and mankind. Springer, Berlin (1996)

    MATH  Google Scholar 

  • Maturana, H., Varela, E.: Autopoiesis and Cognition. The Realization of the Living. Reidel, Dordrecht (1980)

    Google Scholar 

  • Müller-Schloer, C., von der Malsburg, C., Wurtz, R.P.: Organic Computing. Informatik Spektrum (27), 332–336 (2004)

    Google Scholar 

  • Nicolescu, B.: Manifesto of Transdisciplinarity. SUNY Press, New York (2002)

    Google Scholar 

  • Pattee, H.H.: Evolving self-reference: matter, symbols, and semantic closure. Communication and Cognition –Artificial Intelligence 12(1-2), 9–28 (1995)

    Google Scholar 

  • Pattee, H.H.: The physics of symbols and the evolution of semiotic control. In: Workshop on Control Mechanisms for Complex Systems: Issues of Measurement and Semiotic Analysis, Las Cruces, New Mexico, December 1996. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings. Addison-Wesley, Redwood City (1997)

    Google Scholar 

  • Pattee, H.H.: Causation, control and the evolution of complexity. In: Anderson, P.B., et al. (eds.) Downward Causation. Aarhus University Press, Aarhus (2000)

    Google Scholar 

  • Piaget, J.: Genetic Epistemology. Columbia University Press, New York (1970)

    Google Scholar 

  • Piaget, J.: The construction of Reality in the Child. Ballantine Books, New York (1971)

    Google Scholar 

  • Piaget, J.: L’épistémologie des régulations: introduction. In: Lichnerrowicz, A., Perroux, F., Gadoffre, G. (eds.) L’idée de régulation dans les sciences: 2e vol. des Séminaires interdisciplinaires du Collège de France, A. Paris: Maloine: Doin:I-XIII (1977)

    Google Scholar 

  • Piaget, J.: Épistémologie des sciences de l’homme. La Pléiade, Paris (1980)

    Google Scholar 

  • Piaget, J., Garcia, R.: Psychogenesis and the History of Science. Columbia University Press, New York (1989)

    Google Scholar 

  • Poli, R.: The basic problem of the theory of levels of reality. Axiomathes 12(3-4), 261–283 (2001)

    Article  Google Scholar 

  • Poli, R.: Ontological methodology. Int. J. Human-Computer Studies 56, 639–664 (2002)

    Article  Google Scholar 

  • Poli, R.: Three obstructions: forms of causation, chronotopoids and levels of reality. Axiomathes 17(1), 1–18 (2007)

    Article  Google Scholar 

  • Popper, K.: Natural selection and the emergence of mind. In: Radnitzky, G., Bartley, W.W. (eds.) Evolutionary epistemology, rationality and the sociology of knowledge, Open Court, La Salle (1987)

    Google Scholar 

  • Rocha, L.M.: Evolution with material symbol systems. Biosystems 60, 95–121 (2001)

    Article  Google Scholar 

  • Rosen, R.: Life itself: A comprehensive enquiry into the nature, origin and fabrication of life. Columbia University Press, New York (1991)

    Google Scholar 

  • Turney, P.D.: Increasing evolvability considered as a large-scale trend in evolution. In: Proceedings of the 1999 Genetic and Evolutionary Computation Conference (GECCO 1999) Workshop Program, pp. 43–46 (1999)

    Google Scholar 

  • von Uexküll, J.: Theoretische Biologie. Frankfurt a. M, Suhrkamp Taschenbuch Wissenschaft (1973)

    Google Scholar 

  • Varela, F.: Autonomie et Connaissance. Essai sur le vivant. Seuil, Paris (1989)

    Google Scholar 

  • Würtz, R.P. (ed.): Organic Computing. Understanding Complex Systems. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iordache, O. (2010). Introduction. In: Polystochastic Models for Complexity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10654-5_1

Download citation

Publish with us

Policies and ethics