Skip to main content

On Estimating the Dynamic Ocean Topography – A Profile Approach

  • Conference paper
  • First Online:
Gravity, Geoid and Earth Observation

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 135))

Abstract

Since the essential improvements of GRACE gravity field models reliable signatures of the dynamic ocean topography (DOT) can be obtained by subtracting geoid heights from the sea surface. The differences are usually performed after an initial data gridding of sea surface heights implying already an undesirable loss of signal. On the other hand, even the latest gravity field solutions from GRACE exhibit a meridional striping in the geoid and require a smoothing. In order to preserve the high along-track resolution of altimetry the present paper investigates a profile approach which (i) performs a spectral smoothing of the GRACE gravity field (ii) merges mean-tide geoid profiles to the along-track sea level measurements of satellite altimetry and (iii) performs a common low pass filtering of along-track differences in order to make filtered sea level and geoid heights spectrally consistent. The approach is performed with the latest GRACE-only gravity field models and the sea surface height profiles of TOPEX and Jason-1 and produces time varying profiles of the DOT. Globally, the profiles exhibit the expected topographic features which are compared with independent estimates of the DOT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Förste, Ch., et al. (2008). The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geodesy, 82(6), 331–346(16), DOI: 10.1007/s00190-007-0183-8.

    Article  Google Scholar 

  • Jekeli, C. (1981). Alternative methods to smooth the earth gravity field. Rep. 327. Dept Geod Sci & Surv, Ohio State University, Columbus.

    Google Scholar 

  • Kusche, J. (2006). Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity fields. DEOS Delft University of Technology, Delft.

    Google Scholar 

  • Lemoine, F.G., et al. (1998). The Developement of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA Geopotential Model EGM96. NASA/TP-1998-206861, NASA Goddard Space Flight Center, Greenbelt, Maryland.

    Google Scholar 

  • Niiler, P.P., N.A. Maximenko, and J.C. McWilliams (2003). Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys. Res. Lett., 30(22), 2164, doi:10.1029/2003GL018628, 2003.

    Article  Google Scholar 

  • Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2008). An earth gravitational model to degree 2160: EGM2008, presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18.

    Google Scholar 

  • Rio, M.H. and F. Hernandez (2004). A mean dynamic topography computed over the world ocean from altimetry, in-situ measurements and a geoid model. J. Geophys. Res., 109(12).

    Google Scholar 

  • Tapley, B.D., S. Bettadpur, M.M. Watkins, and Ch. Reigber (2004). The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL 019920, 2004.

    Google Scholar 

  • Wünsch, J., P. Schwintzer, and S. Petrovic (2005). Comparison of two different ocean tide models especially with respect to the GRACE satellite mission, Scientific Technical Report STR05/08, Geoforschungszentrum Potsdam, Potsdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bosch, W., Savcenko, R. (2010). On Estimating the Dynamic Ocean Topography – A Profile Approach. In: Mertikas, S. (eds) Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_34

Download citation

Publish with us

Policies and ethics