Skip to main content

Algorithmic Folding Complexity

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

How do we most quickly fold a paper strip (modeled as a line) to obtain a desired mountain-valley pattern of equidistant creases (viewed as a binary string)? Define the folding complexity of a mountain-valley string as the minimum number of simple folds required to construct it. We show that the folding complexity of a length-n uniform string (all mountains or all valleys), and hence of a length-n pleat (alternating mountain/valley), is polylogarithmic in n. We also show that the maximum possible folding complexity of any string of length n is \(O(n/\lg n)\), meeting a previously known lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allouche, J.-P.: Sur la complexité des suites infinies. Bull. Belg. Math. Soc. 1, 133–143 (1994)

    MATH  MathSciNet  Google Scholar 

  2. Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell, J.S.B., Sethia, S., Skiena, S.S.: When can you fold a map? Comput. Geom. Theory Appl. 29(1), 23–46 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Chan, B.: The making of Mens et Manus (in origami), vol. 1 (March 2007), http://techtv.mit.edu/collections/chosetec/videos/361-the-making-of-mens-et-manus-in-origami-vol-1

  4. Dekking, M., Mendès France, M., van der Poorten, A.J.: Folds! Math. Intell. 4, 130–138, 173–181, 190–195 (1982), http://www.springerlink.com.libproxy.mit.edu/content/600308q03484h674/?p=7ae69724020246ea9bf871d5d4b8b3af&pi=4

  5. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  6. Demaine, E.D., O’Rourke, J.: Open problems from CCCG 2008. In: Proc. 21st Canadian Conference on Computational Geometry, CCCG 2009 (to appear, 2009)

    Google Scholar 

  7. Ito, T., Kiyomi, M., Imahori, S., Uehara, R.: Complexity of pleat folding. In: Proc. 25th Workshop on Computational Geometry (EuroCG 2009), pp. 53–56 (2009)

    Google Scholar 

  8. Mendès France, M., van der Poorten, A.J.: Arithmetic and analytic properties of paper folding sequences. Bull. Austr. Math. Soc. 24, 123–131 (1981)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardinal, J., Demaine, E.D., Demaine, M.L., Imahori, S., Langerman, S., Uehara, R. (2009). Algorithmic Folding Complexity. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics