Popular Matchings with Variable Job Capacities

  • Telikepalli Kavitha
  • Meghana Nasre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)


We consider the problem of matching people to jobs, where each person ranks a subset of jobs in an order of preference, possibly involving ties. There are several notions of optimality about how to best match each person to a job; in particular, popularity is a natural and appealing notion of optimality. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not admit popular matchings. This motivates the following extension of the popular matchings problem:

  • Given a graph \(G = ({\mathcal{A}}\cup{\mathcal{J}},E)\) where \({\mathcal{A}}\) is the set of people and \({\mathcal{J}}\) is the set of jobs, and a list \(\langle c_1,\ldots,c_{|{\mathcal{J}}|}\rangle\) denoting upper bounds on the capacities of each job, does there exist \((x_1,\ldots,x_{|{\mathcal{J}}|})\) such that setting the capacity of i-th job to x i , where 1 ≤ x i  ≤ c i , for each i, enables the resulting graph to admit a popular matching.

In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c i is 1 or 2.


Capacity Status Truth Assignment Preference List Capacity Problem Variable Gadget 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto-optimality in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal on Computing 37(4), 1030–1045 (2007)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Abdulkadiroǧluand, A., Sönmez, T.: Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica 66(3), 689–701 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Denman, R., Foster, S.: Using clausal graphs to determine the computational complexity of k-bounded positive one-in-three SAT. Discrete Applied Mathematics 157(7), 1655–1659 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gardenfors, P.: Match making: assignments based on bilateral preferences. Behavioural Sciences 20, 166–173 (1975)CrossRefGoogle Scholar
  6. 6.
    Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded unpopularity matchings. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 127–137. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal matchings. ACM Transactions on Algorithms 2(4), 602–610 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kavitha, T., Mestre, J., Nasre, M.: Popular Mixed Matchings. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Niko-letsea, S. (eds.) ICALP 2009. LNCS, vol. 5556. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Mahdian, M.: Random popular matchings. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 238–242 (2006)Google Scholar
  10. 10.
    Manlove, D., Sng, C.: Popular matchings in the capacitated house allocation problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Proceedings of the 15th Latin American Symposium on Theoretical Informatics, pp. 593–604 (2008)Google Scholar
  12. 12.
    Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Roth, A.E., Postlewaite, A.: Weak versus strong domination in a market with indivisible goods. Journal of Mathematical Economics 4, 131–137 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)Google Scholar
  15. 15.
    Kavitha, T., Nasre, M.: Popular matchings with variable job capacities. Indian Institute of Science. Technical Report. IISc-CSA-TR-2009-7Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Telikepalli Kavitha
    • 1
  • Meghana Nasre
    • 1
  1. 1.Indian Institute of ScienceBangaloreIndia

Personalised recommendations