Skip to main content

Data Structures for Approximate Orthogonal Range Counting

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

We present new data structures for approximately counting the number of points in an orthogonal range. There is a deterministic linear space data structure that supports updates in O(1) time and approximates the number of elements in a 1-D range up to an additive term k 1/c in O(loglogU·loglogn) time, where k is the number of elements in the answer, U is the size of the universe and c is an arbitrary fixed constant. We can estimate the number of points in a two-dimensional orthogonal range up to an additive term k ρ in O(loglogU + (1/ρ)loglogn) time for any ρ> 0. We can estimate the number of points in a three-dimensional orthogonal range up to an additive term k ρ in O(loglogU + (loglogn)3 + (3v)loglogn) time for \(v=\log \frac{1}{\rho}/\log \frac{3}{2}+2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afshani, P.: On Dominance Reporting in 3D. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 41–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Afshani, P., Chan, T.M.: On Approximate Range Counting and Depth. In: Proc. SoCG 2007, pp. 337–343 (2007)

    Google Scholar 

  3. Alstrup, S., Brodal, G.S., Rauhe, T.: New Data Structures for Orthogonal Range Searching. In: Proc. FOCS, pp. 198–207 (2000)

    Google Scholar 

  4. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal Static Range Reporting in One Dimension. In: Proc. STOC 2001, pp. 476–482 (2001)

    Google Scholar 

  5. Andersson, A.: Faster Deterministic Sorting and Searching in Linear Space. In: Proc. FOCS 1996, pp. 135–141 (1996)

    Google Scholar 

  6. Andersson, A., Thorup, M.: Dynamic Ordered Sets with Exponential Search Trees. J. ACM (JACM) 54(3), 13 (2007)

    Article  MathSciNet  Google Scholar 

  7. Aronov, B., Har-Peled, S.: On Approximating the Depth and Related Problems. SIAM J. Comput. 38(3), 899–921 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aronov, B., Har-Peled, S., Sharir, M.: On Approximate Halfspace Range Counting and Relative Epsilon-Approximations. In: Proc. SoCG 2007, pp. 327–336 (2007)

    Google Scholar 

  9. Beame, P., Fich, F.E.: Optimal Bounds for the Predecessor Problem and Related Problems. J. Comput. Syst. Sci. 65(1), 38–72 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bentley, J.L.: Multidimensional Divide-and-Conquer. Commun. ACM 23, 214–229 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Berg, M., van Kreveld, M.J., Snoeyink, J.: Two- and Three-Dimensional Point Location in Rectangular Subdivisions. J. Algorithms 18(2), 256–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chazelle, B., Guibas, L.J.: Fractional Cascading: I. A Data Structuring Technique. Algorithmica 1(2), 133–162 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gabow, H., Bentley, J.L., Tarjan, R.E.: Scaling and Related Techniques for Geometry Problems. In: Proc. STOC 1984, pp. 135–143 (1984)

    Google Scholar 

  14. JaJa, J., Mortensen, C.W., Shi, Q.: Space-Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

    Google Scholar 

  15. Kaplan, H., Sharir, M.: Randomized Incremental Constructions of Three-dimensional Convex Hulls and Planar Voronoi Diagrams, and Approximate Range Counting. In: Proc. SODA 2006, pp. 484–493 (2006)

    Google Scholar 

  16. Matias, Y., Vitter, J.S., Young, N.E.: Approximate Data Structures with Applications. In: Proc. SODA 1994, pp. 187–194 (1994)

    Google Scholar 

  17. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On Data Structures and Asymmetric Communication Complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mortensen, C.W.: Fully Dynamic Orthogonal Range Reporting on RAM. SIAM J. Comput. 35(6), 1494–1525 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mortensen, C.W.: Data Structures for Orthogonal Intersection Searching and Other Problems, Ph.D. thesis (2006)

    Google Scholar 

  20. Mortensen, C.W., Pagh, R., Patrascu, M.: On Dynamic Range Reporting in One Dimension. In: Proc. STOC 2005, pp. 104–111 (2005)

    Google Scholar 

  21. Nekrich, Y.: A Data Structure for Multi-Dimensional Range Reporting. In: Proc. SoCG 2007, pp. 344–353 (2007)

    Google Scholar 

  22. Nekrich, Y.: Data Structures for Approximate Orthogonal Range Counting, arXiv:0906.2738 (2009)

    Google Scholar 

  23. Overmars, M.H.: Efficient Data Structures for Range Searching on a Grid. J. Algorithms 9(2), 254–275 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Patrascu, M., Demaine, E.D.: Logarithmic Lower Bounds in the Cell-Probe Model. SIAM J. Comput. 35(4), 932–963 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Subramanian, S., Ramaswamy, S.: The P-range Tree: A New Data Structure for Range Searching in Secondary Memory. In: Proc. SODA 1995, pp. 378–387 (1995)

    Google Scholar 

  26. Vengroff, D.E., Vitter, J.S.: Efficient 3-D Range Searching in External Memory. In: Proc. STOC 1996, pp. 192–201 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nekrich, Y. (2009). Data Structures for Approximate Orthogonal Range Counting. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics