Skip to main content

Part of the book series: NanoScience and Technology ((NANO))

Abstract

We review recent developments in the field of light confinement in semiconductor microtube resonators fabricated by utilizing the self-rolling mechanism of strained bilayers. We discuss resonant optical modes in the framework of a waveguide model that naturally explains the occurrence of two-dimensional ring modes by constructive interference of light azimuthally guided by the tube wall. Experiments show that diverse geometries of a microtube have strong impact on the emission properties, including preferential and directional emission, as well as on a three-dimensional light confinement. We show that by lithographically structuring the microtube, it is possible to reach a three-dimensional confinement in a fully controlled way. The evolving confined modes can be described by an intuitive model using an expanded waveguide approach together with an adiabatic separation of the circulating and the axial light propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.J. Vahala, Nature 424, 839 (2003)

    Article  Google Scholar 

  2. J.M. Gérard, B. Gayral, J. Lightwave Technol. 17, 2089 (1999)

    Article  Google Scholar 

  3. M. Bayer, T.L. Reinecke, F. Weidner, A. Larionov, A. McDonald, A. Forchel, Phys. Rev. Lett. 86, 3168 (2001)

    Article  Google Scholar 

  4. J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Nature 432, 197 (2004)

    Article  Google Scholar 

  5. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Nature 432, 200 (2004)

    Article  Google Scholar 

  6. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Phys. Rev. Lett. 95, 67401 (2005)

    Article  Google Scholar 

  7. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, R.A. Logan, Appl. Phys. Lett. 60, 289 (1992)

    Article  Google Scholar 

  8. A.F.J. Levi, R.E. Slusher, S.L. McCall, T. Tanbun-Ek, D.L. Coblentz, S.J. Pearton, Electron. Lett. 28, 1010 (1992)

    Article  Google Scholar 

  9. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, Appl. Phys. Lett. 77, 184 (2000)

    Article  Google Scholar 

  10. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, Science 290, 2282 (2000)

    Article  Google Scholar 

  11. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G.S. Solomon, J. Plant, Y. Yamamoto, Phys. Rev. Lett. 89, 233602 (2002)

    Google Scholar 

  12. A. Imamoḡlu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999)

    Article  Google Scholar 

  13. T. Kipp, H. Welsch, C. Strelow, C. Heyn, D. Heitmann, Phys. Rev. Lett. 96, 77403 (2006)

    Article  Google Scholar 

  14. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova, Physica E 6, 828 (2000)

    Article  Google Scholar 

  15. O.G. Schmidt, K. Eberl, Nature 410, 168 (2001)

    Article  Google Scholar 

  16. S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, W. Hansen, Physica E 23, 274 (2004)

    Article  Google Scholar 

  17. S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, O.G. Schmidt, Appl. Phys. Lett. 88, 111120 (2006)

    Article  Google Scholar 

  18. R. Songmuang, A. Rastelli, S. Mendach, O.G. Schmidt, Appl. Phys. Lett. 90, 091905 (2007)

    Article  Google Scholar 

  19. C. Strelow, C.M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, T. Kipp, Phys. Rev. B 76(4), 045303 (2007). DOI 10.1103/PhysRevB.76.045303

    Google Scholar 

  20. T. Kipp, C. Strelow, H. Welsch, C. Heyn, D. Heitmann, AIP Conference Proceedings 893(1), 1127 (2007). DOI 10.1063/1.2730293

    Google Scholar 

  21. C. Strelow, H. Rehberg, C.M. Schultz, H. Welsch, C. Heyn, D. Heitmann, T. Kipp, Phys. Rev. Lett. 101(12), 127403 (2008). DOI 10.1103/PhysRevLett.101.127403

    Article  Google Scholar 

  22. C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, T. Kipp, Physica E 40(6), 1836 (2008). DOI 10.1016/j.physe.2007.10.098

    Google Scholar 

  23. S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, O.G. Schmidt, Phys. Rev. B 78(3), 035317 (2008). DOI 10.1103/PhysRevB.78.035317

    Google Scholar 

  24. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D.J. Thurmer, M. Benyoucef, O.G. Schmidt, Appl. Phys. Lett. 93(9), 094106 (2008). DOI 10.1063/1.2978239

    Article  Google Scholar 

  25. G.S. Huang, S. Kiravittaya, V.A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y.F. Mei, O.G. Schmidt, Appl. Phys. Lett. 94(14), 141901 (2009). DOI 10.1063/1.3111813

    Article  Google Scholar 

  26. V.A. Bolaños Quiñones, G. Huang, J.D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, O.G. Schmidt, Opt. Lett. 34(15), 2345 (2009)

    Article  Google Scholar 

  27. S. Vicknesh, F. Li, Z. Mi, Appl. Phys. Lett. 94(8), 081101 (2009). DOI 10.1063/1. 3086333

    Article  Google Scholar 

  28. M. Sumetsky, Opt. Lett. 29(1), 8 (2004)

    Article  Google Scholar 

  29. Y. Louyer, D. Meschede, A. Rauschenbeutel, Phys. Rev. A 72, 031801(R) (2005)

    Google Scholar 

  30. M. Hosoda, T. Shigaki, Appl. Phys. Lett. 90, 181107 (2007)

    Article  Google Scholar 

  31. A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kipp, T., Strelow, C., Heitmann, D. (2010). Light Confinement in Microtubes. In: Heitmann, D. (eds) Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10553-1_7

Download citation

Publish with us

Policies and ethics