Skip to main content

How X-Ray Methods Probe Chemically Prepared Nanoparticles from the Atomic- to the Nano-Scale

  • Chapter
  • First Online:
Book cover Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals

Part of the book series: NanoScience and Technology ((NANO))

  • 1329 Accesses

Abstract

Chemically prepared nanoparticles are an exceptional class of materials that owe their properties to both the three-dimensional confinement and their large surface area. To characterize their electronic and geometric structural properties, X-ray methods offer unique capabilities. In this chapter, we demonstrate how a combination of X-ray spectroscopy and X-ray diffraction techniques allows one to characterize these nanoparticles with respect to their local atomic properties, their long-range crystalline order and their nanoscale core–shell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Suljoti, M. Nagasono, A. Pietzsch, K. Hickmann, D. Trots, M. Haase, W. Wurth, A. Föhlisch, J. Chem. Phys. 128, 134706 (2008)

    Article  Google Scholar 

  2. O. Lehmann, H. Meyssamy, K. Kömpe, H. Schnablegger, M. Haase, J.Phys. Chem. B 107, 7449 (2003)

    Article  Google Scholar 

  3. R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, 1981)

    Google Scholar 

  4. B.T. Thole, G. van der Laan, J.C. Fuggle, G.A. Sawatzky, R.C. Karnatak, J.-M.Esteva, Phys. Rev. B 32, 5107 (1985)

    Article  Google Scholar 

  5. B.T. Thole, G. van der Laan, Europhys. Lett. 4(9), 1083 (1987)

    Article  Google Scholar 

  6. B.T. Thole, Phys. Rev. B 38, 3158 (1988)

    Article  Google Scholar 

  7. Y. Ni, J.M. Hughes, A.N. Mariano, Am. Mineral. 80, 21 (1995)

    Google Scholar 

  8. T. Roisnel, J. Rodriquez-Carvajal, Mater. Sci. Forum 378/381, 118 (2001)

    Google Scholar 

  9. P. Scherrer, Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl. 2, 98 (1918)

    Google Scholar 

  10. S. Howard, K. Preston, Modern Powder Diffraction, vol. 20 (Mineralogical Society of America, Chantilly, VA, 1989)

    Google Scholar 

  11. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997)

    Article  Google Scholar 

  12. A.P. Alivisatos, Nat. Biotech. 22, 47 (2004)

    Article  Google Scholar 

  13. V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Science 287(5455), 1011 (2000). doi:10.1126/science.287.5455.1011

    Google Scholar 

  14. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, M.G. Bawendi, Science 290(5490), 314 (2000)

    Article  Google Scholar 

  15. X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, J.P. Hermier, New J. Phys. 6, 99 (2004)

    Article  Google Scholar 

  16. D. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, H. Weller, J. Phys. Chem. 108, 18826 (2004)

    Google Scholar 

  17. X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119(30), 7019 (1997). http://dx.doi.org/10.1021/ja970754m

  18. C.L. Cleveland, U. Landman, T.G. Schaaff, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Phys. Rev. Lett. 79(10), 1873 (1997)

    Article  Google Scholar 

  19. A. Pietzsch, E. Suljoti, M. Nagasono, A. Föhlisch, W. Wurth, J. Electron Spectrosc. Relat. Phenom. 81–83, 166 (2008)

    Google Scholar 

  20. K.S. Hamad, R. Roth, J. Rockenberger, T. van Buuren, A.P. Alivisatos, Phys. Rev. Lett. 83(17), 3474 (1999)

    Article  Google Scholar 

  21. S. Hüfner, Photoemission Spectrocsopy: Principles and Applications (Springer, Berlin, 1996)

    Google Scholar 

  22. K. Fauth, Appl. Phys. Lett. 85(15), 3271 (2004)

    Article  Google Scholar 

  23. I. Mekis, D. Talapin, A. Kornowski, M. Haase, H. Weller, J. Phys. Chem. B 107(30), 7454 (2003)

    Article  Google Scholar 

  24. J.E.B. Katari, V.L. Colvin, A.P. Alivisatos, J. Phys. Chem. 98, 4109 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edlira Suljoti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suljoti, E., Pietzsch, A., Wurth, W., Föhlisch, A. (2010). How X-Ray Methods Probe Chemically Prepared Nanoparticles from the Atomic- to the Nano-Scale. In: Heitmann, D. (eds) Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10553-1_17

Download citation

Publish with us

Policies and ethics