Advertisement

Multiple Reduced Hypercube MRH(n): A New Interconnection Network Reducing Both Diameter and Edge of Hypercube

  • Hyun Sim
  • Jae-Chul Oh
  • Hyeong-Ok Lee
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 63)

Abstract

In this paper, Multiple Reduced Hypercube(MRH), which is a new interconnection network based on a hypercube interconnection network, is suggested. Also, this paper demonstrates that MRH(n) proposed in this study is superior to the previously proposed hypercube interconnection networks and the hypercube transformation interconnection networks in terms of network cost(diameter × degree). In addition, several network properties(connectivity, routing algorithm, diameter, broadcasting) of MRH(n) are analyzed.

Keywords

Interconnection network routing algorithm diameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, S.B., Krishnamurthy, B.: A Group-Theoretic Model for Symmertric Interconnection Network. IEEE. Trans. Computers 38(4), 555–565 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Doty, K.W.: New Designs for Dense Processor Interconnection Networks. IEEE. Trans. Computers 33(5), 447–450 (1984)CrossRefGoogle Scholar
  3. 3.
    Duh, D.R., Chen, G.H., Fang, J.F.: Algorithms and Properties of a New Two-Level Network with Folded Hypercubes as Basic Modules. IEEE. Trans. Parallel Distributed syst. 6(7), 714–723 (1995)CrossRefGoogle Scholar
  4. 4.
    El-Amawy, A., Latifi, S.: Properties and Performance of Folded Hypercubes. IEEE. Trans. Parallel Distributed syst. 2(1), 31–42 (1991)CrossRefGoogle Scholar
  5. 5.
    Feng, T.-Y.: A Survey of Interconnection Networks. IEEE. Trans. Computers 14(12), 12–27 (1981)Google Scholar
  6. 6.
    Ghose, K., Desai, K.R.: Hierarchical Cubic Networks. IEEE. Trans. Parallel Distributed syst. 6(4), 427–436 (1995)CrossRefGoogle Scholar
  7. 7.
    Gupta, A.K., Hambrusch, S.E.: Multiple Network Embeddings into Hypercubes. J. Parallel and Distributed Computing 19, 73–82 (1993)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Harary, F., Hayes, J.P., Wu, H.-J.: A Survey of the Theory of Hypercube Graphs. Comput. Math. Appl. 15, 277–289 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Francisco (1992)zbMATHGoogle Scholar
  10. 10.
    Mendia, V.E., Sarkar, D.: Optimal Broadcasting on the Star Graph. IEEE. Trans. Parallel Distributed syst. 3(4), 389–396 (1992)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Park, J.-H.: Circulant Graphs and Their Application to Communication Networks. Ph.D. Thesis, Dept. of Computer Science, KAIST, Taejon Korea (1992)Google Scholar
  12. 12.
    Reed, D.A., Fujimoth, R.M.: Multicomputer Networks: Message-Based Parallel Processing. MIT Press, Cambridge (1987)Google Scholar
  13. 13.
    Vaidya, A.S., Rao, P.S.N., Shankar, S.R.: A Class of Hypercube-like Networks. In: Proc. of the 5th IEEE Symposium on Parallel and Distributed Processing, pp. 800–803 (1993)Google Scholar
  14. 14.
    Wu, A.Y.: Embedding of Tree Networks into Hypercubes. J. Parallel and Distributed Computing 2, 238–249 (1985)CrossRefGoogle Scholar
  15. 15.
    Yun, S.-K., Park, K.-H.: Comments on ’Hierarchical Cubic Networks. IEEE. Trans. Parallel Distributed syst. 9(4), 410–414 (1998)CrossRefGoogle Scholar
  16. 16.
    Tucker, L.W., Robertson, G.G.: Architecture and Application of the Connection Machine. IEEE. Trans. Computers 21(8), 26–38 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hyun Sim
    • 1
  • Jae-Chul Oh
    • 1
  • Hyeong-Ok Lee
    • 2
  1. 1.Department of Computer ScienceSunchon National UniversitySunchonKorea
  2. 2.Department of Computer EducationSunchon National UniversitySunchonKorea

Personalised recommendations