Automatic Synthesis and Deployment of Intensional Kahn Process Networks

  • Manuel Peralta
  • Supratik Mukhopadhyay
  • Ramesh Bharadwaj
Part of the Communications in Computer and Information Science book series (CCIS, volume 63)


In this paper we introduce and study, theoretically, a clean slate “formal” foundational approach for developing and deploying high-assurance distributed embedded systems deployed in mission-critical applications. We propose a simple formal distributed asynchronous framework extending Kahn Process Networks with intensional specification. More precisely, we present a model-driven approach based on a platform-independent language and an intensional specification logic that allows us to synthesize distributed agents that can handle interactions with external resources asynchronously, ensure enforcement of information flow and security policies, and have the ability to deal with failures of resources. Our approach allows rapid development and automated deployment of formally verified embedded networked systems that provide guarantees that clients’ requirements will be met and QoS guarantees will be respected. Moreover, it allows modeling (and programming) reliable distributed systems for multi-core hosts. Such a capability makes our framework suitable for next generation grid computing systems where multi-core individual hosts need to be utilized for improving scalability.Given an intensional logical specification of a distributed embedded system, that includes Quality of Service (QoS) requirements, a set of software resources and devices available in a network, and their formal interface specifications, a deductive system can automatically generate distributed extended Kahn processes and their deployment information in such a way that the application requirements—including QoS requirements—are guaranteed to be met. The generated processes use the inputs of the sensors/meters/probes and the management policies of the customer to generate real-time control decisions for managing the system. The processes are deployed automatically on a distributed network involving sensors/meters/probes tracking system parameters, actuators controlling devices, and diverse computing and communication elements such as PDA’s, etc.


Wireless Sensor Network Service Composition Police Department Operational Semantic Natural Deduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montague, R.: Pragmatics and Intensional Logic. Synthese 22, 68–94 (1970)zbMATHCrossRefGoogle Scholar
  2. 2.
    Wadge, W.W.: Lucid, the Dataflow Programming Language. Academic Press, LondonGoogle Scholar
  3. 3.
    Ditu, G.: The Programming Language TransLucid, PhD Dissertation, University of New South Wales (2007)Google Scholar
  4. 4.
    Paquet, J., Wu, A., Grogono, A.: Towards a Framework for the General Intensional Programming Compiler in the GIPSY. In: Proceedings of OOPSLA 2004 (2004)Google Scholar
  5. 5.
    Faustini, A.: Towards an Operational Semantics of Pure Dataflow. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 212–224. Springer, Heidelberg (1982)Google Scholar
  6. 6.
    Loo, T.B., Condie, T., Garofalakis, M.N., Gay, D.E., Hellerstein, J.M., Maniatis, P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative Networking: Language, Execution, and Optimization. In: Proceedings of SIGMOD 2006 (2006)Google Scholar
  7. 7.
    Yau, S., et al.: Reconfigurable Context-Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing 1(3), 33–40 (2002)CrossRefGoogle Scholar
  8. 8.
    Mikic-Rakic, M., Medvidovic, N.: Adaptable Architectural Middleware for Programming-in-the-Small-and-Many. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 162–181. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ranganathan, A., Campbell, R.H.: A Middleware for Context-Aware Agents in Ubiquitous Computing Environments. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 143–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Popovici, F.A., Alonso, G.: A Proactive Middleware Platform for Mobile Computing. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 455–473. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Lang, U.: Access Policies in Middleware, PhD Thesis. University of Cambridge (2003)Google Scholar
  12. 12.
    Abdelzaher, T., Blum, B., Cao, B.Q., Chen, Y., Evans, D., George, J., George, S., Gu, L., He, T., Krishnamurthy, S., Luo, L., Son, S., Stankovic, J., Stoleru, R., Wood, A.: EnviroTrack: Towards an Environmental Computing Paradigm for Distributed Sensor Networks. In: The 24th International Conference on Distributed Computing Systems. Tokyo, Japan, March 23-26 (2004)Google Scholar
  13. 13.
    Yau, S., Davulcu, H., Mukhopadhyay, S., Huang, D., Yao, Y.: Adaptable, Situation-aware, Secure Service-based (AS3) Systems. In: Proceedings of the IEEE International Symposium Object-oriented, Real-time, Distributed Computing, ISORC 2005 (2005)Google Scholar
  14. 14.
    Bharadwaj, R., Mukhopadhyay, S., Padh, N.: Service Composition in a Secure Agent-based Architecture. In: Proceedings of the IEEE International Conference on E-Technologies, E-commerce and E-Service (EEE 2005), pp. 787–788 (2005)Google Scholar
  15. 15.
    Internet2 Medical Middleware (MedMid) Working Group: Draft Workplan Scenarios (2003)Google Scholar
  16. 16.
    Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic Composition of Web Services using Semantic Descriptions. In: WSMAI 2003, pp. 17–24 (2003)Google Scholar
  17. 17.
    Duan, Z., Bernstein, A.J., Lewis, P.M., Lu, S.: Semantics Based Verification and Synthesis of BPEL4WS Abstract Processes. In: ICWS 2004, pp. 734–737 (2004)Google Scholar
  18. 18.
    Necula, G.C.: Enforcing Security and Safety with Proof-Carrying Code. Electr. Notes Theor. Comput. Sci. 20 (1999)Google Scholar
  19. 19.
    Li, B., Nahrstedt, K.: A Control-based Middleware Framework for Quality of Service Adaptations. IEEE Journal on Selected Areas in Communication 17(9) (September 1999)Google Scholar
  20. 20.
    Roemer, K., Kasten, O., Mattern, F.: Middleware Challenges in Wireless Sensor Networks. Mobile Computing and Communications Review 3(2) (2002)Google Scholar
  21. 21.
    Curbera, F., et al.: Business Process Execution Language for Web Services (2002)Google Scholar
  22. 22.
    Christensen, E., et al.: The Web Services Description Language (WSDL), IBMGoogle Scholar
  23. 23.
    Berners-Lee, T., et al.: The semantic web, Scientific American (May 2003)Google Scholar
  24. 24.
    Ankolekar, A., Huch, F., Sycara, K.: Concurrent Execution Semantics for DAML-S with Subtypes. In: Proceedings of The First International Semantic Web Conference, ISWC (2002)Google Scholar
  25. 25.
    Newcomer, E.: Understanding Web Services. Addison Wesley, Reading (2002)Google Scholar
  26. 26.
    Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M., Newling, T.: Patterns: Service-oriented Architecture and Web Services. IBM Redbook, ISBN 073845317X (2004)Google Scholar
  27. 27.
    Bell, D., La Padula, L.: Secure Computer Systems: Unified Exposition and Multics Interpretation, Technical Report, Mitre Corporation (1975)Google Scholar
  28. 28.
  29. 29.
    Blackburn, P., de Rijke, M., Venema, Y.: A course in modal logic. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Barendregt, H.: The lambda calculus, its syntax and semantics. North-Holland, Amsterdam (1984)zbMATHGoogle Scholar
  31. 31.
    Milner, A.J.R.J.: Communication and Concurrency. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Charatonik, W., Dal-Zilio, S., Gordon, A.D., Mukhopadhyay, S., Talbot, J.M.: Model Checking Mobile Ambients Theoretical Computer Science (1-3), 277–331 (2003)Google Scholar
  33. 33.
    Ponnekanti, S., Fox, A.: SWORD: A Developer Toolkit for Web Service Composition. In: Proceedings of WWW 2002 (2002)Google Scholar
  34. 34.
  35. 35.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory (Cambridge Tracts in Theoretical Computer Science). Cambridge University Press, Cambridge, ISBN 0-521-77911-1Google Scholar
  36. 36.
  37. 37.
    Brachman, R.J., Levesque, H.J.: Readings in Knowledge Representation. Morgan Kaufmann, Los Altos (1985)zbMATHGoogle Scholar
  38. 38.
    Wadler, P.: Comprehending Monads. In: 6’th Conference on Lisp and Functional Programming, vol. 2, pp. 461–493 (1992)Google Scholar
  39. 39.
    Baumann, A., Heiser, G., Appavoo, J., Da Silva, D., Krieger, O., Wisniewski, R.W., Kerr, J.: Providing Dynamic Update in an Operating System. In: USENIX Annual Technical Conference, General Track, pp. 279–291 (2005)Google Scholar
  40. 40.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, CambridgeGoogle Scholar
  41. 41.
    Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In: Proceedings of IFIP Information Processing (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Manuel Peralta
    • 1
  • Supratik Mukhopadhyay
    • 2
  • Ramesh Bharadwaj
    • 3
  1. 1.Utah State UniversityLogan
  2. 2.Louisiana State UniversityBaton Rouge
  3. 3.Naval Research LaboratoryWashington

Personalised recommendations