Advertisement

Arterien der oberen Extremität

  • R. Vosshenrich
  • S. Partovi
  • P. Reimer

Zusammenfassung

Für die MR-Angiographie der oberen Extremität gibt es verschiedene Techniken, die zur Anwendung kommen. Bei der kontrastmittelverstärkten Variante wird nach intravenöser Gabe eines gadoliniumhaltigen Kontrastmittels der Fluss in den Gefäßen gemessen. Diese Technik beruht in erster Linie auf der Verkürzung der T1-Zeit des Bluts durch das Kontrastmittel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arend WP, Michel BA, Bloch DA et al. (1990) The American College of Rheumatology 1990 criteriafortheclassificationofTakayasuarteritis. Arthritis Rheum 33: 1129–1134Google Scholar
  2. Beck A (1994) Angiographie der Hand, Berlin SpringerGoogle Scholar
  3. Bollinger A (1997) Funktionelle Angiologie. Lehrbuch und Atlas. Stuttgart, ThiemeGoogle Scholar
  4. Both M, Moosig F,Gross WL, Heller M (2009) Großgefäßvaskulitiden. Bildgebung und interventionelleTherapie. Radiologe 49: 947–966Google Scholar
  5. Bradley WG, ed. (2002) Pocket Radiologist Vascular, Amirsys Inc. Salt Lake CityGoogle Scholar
  6. Catena C, Cavarape A, Dotto L et al. (2003) The emerging risk factors for cardiovascular disease: a review of the epidemiologic evidence for lipoprotein (a), homocysteine, and fibrinogen. AdvClin Path 7: 3–11Google Scholar
  7. Connell DA, Koulouris G, Thorn DA, Sci DA, Potter HG (2002) Contrast-enhanced MR angiography of the hand. RadioGraphics 22: 583–599Google Scholar
  8. Drapé JL, Feydy A, Guerini H et al. (2005) Vascular lesions of the hand. Eur J Radiol 56: 331–343Google Scholar
  9. Enjolras O. (1997) Classification and management of the various superficial vascular anomalies: hemangiomas and vascular malformations. J Dermatol 24: 701–710Google Scholar
  10. Ernemann U, Kramer U, Miller S et al. (2010) Current concept in the classification, diagnosis and treatment of vascular anomalies. Eur J Radiol 75: 2–11Google Scholar
  11. Hunder GG, Bloch DA, Michel BA et al. (1990) The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 33: 1122–1128Google Scholar
  12. Kadir S (1992) Angiographie – Normalbefunde und Varianten. Weinheim VCHGoogle Scholar
  13. Kadir S (1986) Diagnostic arteriography. Philadelphia: WB SaundersGoogle Scholar
  14. Karmonik C, Bismuth J, Shah DJ, Davies MG, Purdy D, Lumsden AB (2011) Computational study of haemodynamic effects of entry- and exit-tear coverage in a DeBakey type III aortic dissection: technical report. Eur J Vasc Endovasc Surg 42(2): 172–7Google Scholar
  15. Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrastenhanced 3D MR angiography. Magn Reson Med 36(3): 345–351Google Scholar
  16. Lippert H (1984) Variabilität der Hand- und Fußarterien. Handchir 16: 254–258Google Scholar
  17. Morita S, Masukawa A, Szuki K et al. (2011) Unenhanced MR angiography: techniques and clinical applications in patients with chronic kidney disease. Radio Graphics 31: E13–E33Google Scholar
  18. Moriwaki R, Noda M, Yajima M et al. (1997) Clinical manifestations of Takayasu arteritis in India and Japan: new classification of angiographic findings. Angiology 48: 369–379Google Scholar
  19. Moske-Eick O, Elsner K, Leupold J, Strecker R, Ghanem N, Winterer J (2005) Benefits of 3T contrast-enhanced MR angiography (CE-MRA) of the hands using parallel imaging compared to 1.5T in patients with Raynaud’s phenomenon. RSNA (abstract)Google Scholar
  20. Nastri MV, Baptista LPS, Baroni RH et al. (2004) Gadolinium-enhanced Threedimensional MR Angiography of Takayasu Arteritis. RadioGraphics 24: 773–786Google Scholar
  21. Olin J (2000) Thrombangitisobliterans (Buerger’s disease). N Eng J Med 343: 864–9Google Scholar
  22. Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3(6): 877–881Google Scholar
  23. Rantner B, Fraedrich G. (2007) Verschlussprozesse des Truncus brachiocephalicus und der Arteria subclavia. Gefässchirurgie 12: 455–464Google Scholar
  24. Reimer P (2009) Nephrogenic systemic fibrosis. Vasa 38(1): 31–8Google Scholar
  25. Reisinger C, Gluecker T, Jacob AL, Bongartz G, Bilecen D (2009) Dynamic magnetic resonance angiography of the arteries of the hand. A comparison between an extracellular and an intravascular contrast agent. Eur Radiol 19(2): 495–502Google Scholar
  26. Reuter M, Biederer J, Both M et al. (2003) Radiologie der systematischen Vaskulitiden. Fortschr Röntgenstr 175: 1184–1192Google Scholar
  27. Sheehy N, MacNally S, Smith CS et al. (2005) Contrast enhanced MR angiography of subclavian steal syndrome: value of the 2D Time-of-Flight »Localizer « sign. Amer J Roentgenol 185: 1069–1073Google Scholar
  28. Stanson AW (2000) Imaging findings in extracranial (giant cell) temporal arteritis. Clin Exp Rheumatol 18: 43–48Google Scholar
  29. Stepansky F, Hecht EM, Rivera R et al. (2008) Dynamic MR angiography of the upper extremity vascular disease: pictorial review. RadioGraphics 28: e28Google Scholar
  30. Vollmar J (1996) Rekonstruktive Chirurgie der Arterien, 4., überarb. erw. Aufl. Thieme Verlag, Stuttgart, New YorkGoogle Scholar
  31. Vosshenrich R, Reimer P (2009) Nephrogenic systemic fibrosis. Vasa 38(1): 31–8Google Scholar
  32. Wang J, Yarnykh VL, Molitor JA et al. (2008) Micro magnetic resonance angiography of the finger in systemic sclerosis. Rheumatology (Oxford) 47(8): 1239–43Google Scholar
  33. Widmer MK, Uehlinger D, Do DD, Schmidli J (2008) Shuntchirurgie bei Hämodialysepatienten. Teil 1: Die Erstanlage. Gefässchirurgie 13: 135–145Google Scholar
  34. Widmer MK, Uehlinger D, Do DD, Schmidli J (2008) Shuntchirurgie bei Hämodialysepatienten. Teil 2: Revisionen. Gefässchirurgie 13: 213–224Google Scholar
  35. Winterer JT, Blanke P, Schaefer A et al. (2011) Bilateral contrast-enhanced MR angiography of the hand: diagnostic image quality of accelerated MRI using echo sharingwith interleaved stochastic trajectories (TWIST). Eur Radiol 21: 1026–1033Google Scholar
  36. Zeitler E, Hrsg. (1997) Klinische Radiologie. Arterien und Venen. Diagnostik mit bildgebenden Verfahren. Berlin SpringerGoogle Scholar
  37. Zoppini G, Targher G, Bobora E (2011) The role of serum uric acid in cardiovascular disease in Type 2 diabetic and non-diabetic subjects: a narrative review. J Endocrinol Invest 34: 881–6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. Vosshenrich
    • 1
  • S. Partovi
    • 2
  • P. Reimer
    • 3
  1. 1.Praxis für Moderne Schnittbild DiagnostikGöttingen
  2. 2.Department of RadiologyUniversity Hospitals Case Medical Center/Case Western, Reserve UniversityOhioUSA-Cleveland
  3. 3.Institut für diagnostische und interventionelle RadiologieStädtisches Klinikum KarlsruheKarlsruhe

Personalised recommendations