Advertisement

Pulmonalgefäße

  • P. Apfaltrer
  • T. Henzler

Zusammenfassung

Der Truncus pulmonalis entspringt aus dem pulmonalarteriellen Ausflusstrakt des rechten Herzens und teilt sich Y-förmig in die linke und rechte Pulmonalarterie (◘ Abb. 4.1). Die Pulmonalarterien verjüngen sich gleichmäßig in Richtung der Lungenperipherie. Der Durchmesser des Truncus pulmonalis sollte den der Aorta ascendens nicht überschreiten und die Durchmesser der Pulmonalarterien sollten unterhalb des Querschnitts der Aorta descendens liegen. Die Segmentarterien teilen sich in je zwei Subsegmentarterien. Eine Ausnahme hiervon bildet nur das Segment 6, aus dem drei Subsegmentastarterien entstehen. Es existieren allerdings vielfältige Varianten dieses Teilungsmusters mit bis zu vier Ästen und gelegentlich auch schmalen einzelnen Ästen aus einer Segmentarterie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anselme F, Gahide G, Savoure A et al. (2006) MR evaluation of pulmonary vein diameter reduction after radiofrequency catheter ablation of atrial fibrillation. Eur Radiol 16: 2505–2511Google Scholar
  2. Bock M, Schoenberg SO, Floemer F, Schad LR (2000) Separation of arteries and veins in 3D MR angiography using correlation analysis. Magn Reson Med 43: 481–487Google Scholar
  3. Ersoy H, Goldhaber SZ, Cai T, et al. (2007) Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. AJR Am J Roentgenol 188: 1246–1254Google Scholar
  4. Fink C, Puderbach M, Ley S et al. (2005) Intraindividual comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine for time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the upper torso. J Magn Reson Imaging 22: 286–290Google Scholar
  5. Fishman AP (1963) Dynamic of the pulmonary circulation. In: W.F. Hamilton, (ed) Handbook of Physiology. American Physiological Society, Washington D.C.Google Scholar
  6. Goyen M, Laub G, Ladd ME, et al. (2001) Dynamic 3D MR angiography of the pulmonary arteries in under four seconds. J Magn Reson Imaging 13: 372–377Google Scholar
  7. Henzler T, Dietrich O, Krissak R, et al. (2009) Half-Fourier-acquisition singleshot turbo spin-echo (HASTE) MRI of the lung at 3 Tesla using parallel imaging with 32-receiver channel technology. J Magn Reson Imaging 30: 541–546Google Scholar
  8. Kluge A, Dill T, Ekinci O et al. (2004) Decreased pulmonary perfusion in pulmonary vein stenosis after radiofrequency ablation: assessment with dynamic magnetic resonance perfusion imaging. Chest 126: 428–437Google Scholar
  9. Ley S, Fink C, Zaporozhan J et al. (2005) Value of high spatial and high temporal resolution magnetic resonance angiography for differentiation between idiopathic and thromboembolic pulmonary hypertension: initial results. Eur Radiol 15: 2256–2263Google Scholar
  10. Ley S, Kauczor HU, Heussel CP et al. (2003) Value of contrast-enhanced MR angiography and helical CT angiography in chronic thromboembolic pulmonary hypertension. Eur Radiol 13: 2365–2371Google Scholar
  11. Maki DD, Siegelman ES, Roberts DA, Baum RA, Gefter WB (2001) Pulmonary arteriovenous malformations: three-dimensional gadolinium-enhanced MR angiography-initial experience. Radiology 219: 243–246Google Scholar
  12. Nikolaou K, Schoenberg SO, Attenberger U et al. (2005) Pulmonary Arterial Hypertension: Diagnosis with Fast Perfusion MR Imaging and High- Spatial-Resolution MR Angiography – Preliminary Experience. Radiology 236: 694–703Google Scholar
  13. Ohno Y, Hatabu H, Takenaka D, Adachi S, Hirota S, Sugimura K (2002) Contrast-enhanced MR perfusion imaging and MR angiography: utility for management of pulmonary arteriovenous malformations for embolotherapy. Eur J Radiol 41: 136–146Google Scholar
  14. Ohno Y, Higashino T, Takenaka D et al. (2004) MR angiography with sensitivity encoding (SENSE) for suspected pulmonary embolism: comparison with MDCT and ventilation-perfusion scintigraphy. AJR Am J Roentgenol 183: 91–98Google Scholar
  15. Oudkerk M, van Beek EJ, Wielopolski P et al. (2002) Comparison of contrastenhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet 359: 1643–1647Google Scholar
  16. Remy-Jardin M, Pistolesi M, Goodman LR et al. (2007) Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology 245: 315–329Google Scholar
  17. Risse F, Kuder TA, Kauczor HU, Semmler W, Fink C (2009) Suppression of pulmonary vasculature in lung perfusion MRI using correlation analysis. Eur Radiol 19: 2569–2575Google Scholar
  18. Schoenberg SO, Bock M, Floemer F et al. (1999) High-resolution pulmonary arterio- and venography using multiple-bolus multiphase 3D-Gd-mRA. J Magn Reson Imaging 10: 339–346Google Scholar
  19. Schoepf UJ, Costello P (2004) CT angiography for diagnosis of pulmonary embolism: state of the art. Radiology 230: 329–337Google Scholar
  20. Stein PD, Gottschalk A, Sostman HD et al. (2008) Methods of Prospective Investigation of Pulmonary Embolism Diagnosis III (PIOPED III). Semin Nucl Med 38: 462–470Google Scholar
  21. Wagner M, Rief M, Asbach P et al. (2009) Gadofosveset trisodium-enhanced magnetic resonance angiography of the left atrium-A feasibility study. Eur J Radiol 75: 166–72Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Apfaltrer
    • 1
  • T. Henzler
    • 2
  1. 1.Institut für Klinische Radiologie und NuklearmedizinUniversitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität HeidelbergMannheim
  2. 2.Institut für Klinische Radiologie und Nuklearmedizin Universitätsmedizin MannheimMedizinische Fakultät Mannheim, Universität HeidelbergMannheim

Personalised recommendations