Advertisement

Bildgebung bei Venenerkrankungen

  • G.M. Kukuk
  • A. Lakghomi
  • W. Willinek

Zusammenfassung

Venenerkrankungen gehören zu den häufigsten Erkrankungen in unserer Bevölkerung. Trotz ihrer Häufigkeit wird den Venenerkrankungen im klinischen Alltag meist nur eine geringe Bedeutung zugemessen, insbesondere im Vergleich zu den arteriellen Gefäßerkrankungen. Die Gründe hierfür liegen vermutlich in einem meist chronischen Verlauf und darin, dass Venenerkrankungen häufig nicht akut lebensbedrohlich sind. Dennoch ist das Nichterkennen einer venösen Erkrankung, z. B. der tiefen Venenthrombose (TVT), mit einer erhöhten Mortalität und Morbidität assoziiert (Kearon 2004, Pinede et al. 2001).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alpert JS, Dalen JE. (1994) Epidemiology and natural history of venous thromboembolism. Prog Cardiovasc Dis 36: 417–422Google Scholar
  2. Asciutto G, Mumme A, Marpe B, Koster O, Asciutto KC, Geier B. (2008) MR venography in the detection of pelvic venous congestion. Eur J Vasc Endovasc Surg 36: 491–496Google Scholar
  3. Atiyeh BS, Musharrafieh RS. (1995) Klippel-Trenaunay-type syndrome: an eponym for various expressions of the same entity. J Med 26: 253–260Google Scholar
  4. Bass JE, Redwine MD, Kramer LA, Huynh PT, Harris JH, Jr. (2000) Spectrum of congenital anomalies of the inferior vena cava: cross-sectional imaging findings. Radiographics 20: 639–652Google Scholar
  5. Beard RW, Highman JH, Pearce S, Reginald PW. (1984) Diagnosis of pelvic varicosities in women with chronic pelvic pain. Lancet 2: 946–949Google Scholar
  6. Biland L, Zemp E, Widmer LK. (1987) [Epidemiology of venous thromboembolism]. Internist (Berl) 28: 285–290Google Scholar
  7. Bültmann BD, Mackensen-Haen S, Schmid KW, Kirkpatrick CJ. (2008) Kreislauferkrankungen. In: Böcker W, Denk H, Heitz PU, Moch H, eds. Pathologie. 4.Aufl. München: Urban&FischerGoogle Scholar
  8. Calligaro KD, Ahmad S, Dandora R et al. (1995) Venous aneurysms: surgical indications and review of the literature. Surgery 117: 1–6Google Scholar
  9. Caravan P, Cloutier NJ, Greenfield MT et al. (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 124: 3152–3162Google Scholar
  10. Carr JC, Nemcek AA, Jr., Abecassis M et al. (2003) Preoperative evaluation of the entire hepatic vasculature in living liver donors with use of contrastenhanced MR angiography and true fast imaging with steady-state precession. J Vasc Interv Radiol 14: 441–449Google Scholar
  11. Charon JP, Milne W, Sheppard DG, Houston JG. (2004) Evaluation of MR angiographic technique in the assessment of thoracic outlet syndrome. Clin Radiol 59: 588–595Google Scholar
  12. Coon WW, Willis PW, 3rd. (1967) Thrombosis of axillary and subclavian veins. Arch Surg 94: 657–663Google Scholar
  13. Covey AM, Brody LA, Getrajdman GI, Sofocleous CT, Brown KT. (2004) Incidence, patterns, and clinical relevance of variant portal vein anatomy. AJR Am J Roentgenol 183: 1055–1064Google Scholar
  14. DA Loose, G Faerber, J Weber et al. (2013) Primary Varicosis and venous Malformation in the Genital Area. Phlebology Schattauer 42: 270–277Google Scholar
  15. de Bruijn SF, Stam J, Vandenbroucke JP (1998) Increased risk of cerebral venous sinus thrombosis with third-generation oral contraceptives. Cerebral Venous Sinus Thrombosis Study Group. Lancet 351: 1404Google Scholar
  16. DeLeve LD, Valla DC, Garcia-Tsao G. (2009) Vascular disorders of the liver. Hepatology 49: 1729–1764Google Scholar
  17. DGA (2005) Interdisziplinäre S2-Leitlinie: Diagnostik und Therapie der Venenthrombose und der Lungenembolie. Vasa 34: Suppl. 66Google Scholar
  18. Diehm C, Stammler F, Amendt K. (1997) Die tiefe Venenthrombose: Diagnostik und Therapie. Dt Ärzteblatt 94: A301–311Google Scholar
  19. Dollery CM, Sullivan ID, Bauraind O, Bull C, Milla PJ. (1994) Thrombosis and embolism in long-term central venous access for parenteral nutrition. Lancet 344: 1043–1045Google Scholar
  20. Douketis JD, Kearon C, Bates S, Duku EK, Ginsberg JS (1998) Risk of fatal pulmonary embolism in patients with treated venous thromboembolism. JAMA 279: 458–462Google Scholar
  21. Dow RS, Berglund G. (1942) Vascular pattern of lesions of multiple sclerosis. Arch Neurol Psychiatry 47: 1–18Google Scholar
  22. Drenckhahn D (2004) Herz-Kreislauf-System. In: Benninghoff A, Drenckhahn D, eds. Anatomie. 16. ed. München: Urban & Fischer: 1–134Google Scholar
  23. Eichlisberger R, Widmer MT, Frauchiger B, Widmer LK, Jager K. (1994) [The incidence of post-thrombotic syndrome]. Wien Med Wochenschr 144: 192–195Google Scholar
  24. Elsayes KM, Menias CO, Dillman JR, Platt JF, Willatt JM, Heiken JP (2008) Vascular malformation and hemangiomatosis syndromes: spectrum of imaging manifestations. AJR Am J Roentgenol 190: 1291–1299Google Scholar
  25. Erdman WA, Parkey RW. (1990) MR imaging of deep venous thrombosis. AJR Am J Roentgenol 155: 897Google Scholar
  26. Evans AJ, Sostman HD, Knelson MH et al. (1993) 1992 ARRS Executive Council Award. Detection of deep venous thrombosis: prospective comparison of MR imaging with contrast venography. AJR Am J Roentgenol 161: 131–139Google Scholar
  27. Filippidis A, Kapsalaki E, Patramani G, Fountas KN. (2009) Cerebral venous sinus thrombosis: review of the demographics, pathophysiology, current diagnosis, and treatment. Neurosurg Focus 27: E3Google Scholar
  28. Fraser DG, Moody AR, Davidson IR, Martel AL, Morgan PS. (2003) Deep venous thrombosis: diagnosis by using venous enhanced subtracted peak arterial MR venography versus conventional venography. Radiology 226: 812–820Google Scholar
  29. Froehlich JB, Prince MR, Greenfield LJ, Downing LJ, Shah NL, Wakefield TW. (1997) »Bull’s-eye« sign on gadolinium-enhanced magnetic resonance venography determines thrombus presence and age: a preliminary study. J Vasc Surg 26: 809–816Google Scholar
  30. Gabella G (1995) Cardiovascular. In: Horne T, ed. Gray’s Anatomy. 38 ed. London: Churchill LivingstoneGoogle Scholar
  31. Gayer G, Luboshitz J, Hertz M et al. (2003) Congenital anomalies of the inferior vena cava revealed on CT in patients with deep vein thrombosis. AJR Am J Roentgenol 180: 729–732Google Scholar
  32. Ginaldi S, Chuang VP, Wallace S. (1980) Absence of hepatic segment of the inferior vena cava with azygous continuation. J Comput Assist Tomogr 4: 112–114Google Scholar
  33. Goodman LR, Stein PD, Matta F et al. (2007) CT venography and compression sonography are diagnostically equivalent: data from PIOPED II. AJR Am J Roentgenol 189: 1071–1076Google Scholar
  34. Greenberg MS. (2006) Handbook of Neurosurgery. 6 ed. New York: ThiemeGoogle Scholar
  35. Grist TM, Korosec FR, Peters DC et al. (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207: 539–544Google Scholar
  36. Hadizadeh DR, Gieseke J, Lohmaier SH et al. (2008) Peripheral MR angiography with blood pool contrast agent: prospective intraindividual comparative study of high-spatial-resolution steady-state MR angiography versus standard-resolution first-pass MR angiography and DSA. Radiology 249: 701–711Google Scholar
  37. Hadizadeh DR, Kukuk GM, Fahlenkamp UL et al. (2012) Simultaneous MR Arteriography and Venography With Blood Pool Contrast Agent Detects Deep Venous Thrombosis in Suspected Arterial Disease. AJR Am J Roentgenol 198: 1188–1195Google Scholar
  38. Haneder S, Attenberger UI, Biffar A et al. (2011) Gadofosveset: parameter optimization for steady-state imaging of the thoracic and abdominal vasculature. Invest Radiol 46: 678–685Google Scholar
  39. Hansch A, Betge S, Poehlmann G et al. (2011) Combined magnetic resonance imaging of deep venous thrombosis and pulmonary arteries after a single injection of a blood pool contrast agent. Eur Radiol 21: 318–325Google Scholar
  40. Hartmann M, Wiethoff AJ, Hentrich HR, Rohrer M. (2006) Initial imaging recommendations for Vasovist angiography. Eur Radiol 16 Suppl 2: B15–23Google Scholar
  41. Kearon C (2004) Long-term management of patients after venous thromboembolism. Circulation 110: 10–18Google Scholar
  42. Kearon C. (2003) Natural history of venous thromboembolism. Circulation 107: 22–30Google Scholar
  43. Khandelwal N, Agarwal A, Kochhar R et al. (2006) Comparison of CT venography with MR venography in cerebral sinovenous thrombosis. AJR Am J Roentgenol 187: 1637–1643Google Scholar
  44. Kim JS, Chandler A, Borzykowski R, Thornhill B, Taragin BH. (2012) Maximizing time-resolved MRA for differentiation of hemangiomas, vascular malformations and vascularized tumors. Pediatr Radiol Pediatr Radiol 42: 775–784Google Scholar
  45. Kreft B, Strunk H, Flacke S, et al. (2000) Detection of thrombosis in the portal venous system: comparison of contrast-enhanced MR angiography with intraarterial digital subtraction angiography. Radiology 216: 86–92Google Scholar
  46. Kügler C. (2011) Venenkrankheiten. Berlin: ABW WissenschaftsverlagGoogle Scholar
  47. Kukuk GM, Hadizadeh DR, Bostrom A et al. (2010) Cerebral arteriovenous malformations at 3.0 T: intraindividual comparative study of 4D-MRA in combination with selective arterial spin labeling and digital subtraction angiography. Invest Radiol 45: 126–132Google Scholar
  48. Kukuk GM, Hadizadeh DR, Fahlenkamp UL et al. (2011) Venous applications of MRA with a blood pool contrast agent. 23rd Annual international conference on magnetic resonance angiography 2011;Book of Abstracts 23: 76Google Scholar
  49. Lee BB, Bergan J, Gloviczki P et al. (2009) Diagnosis and treatment of venous malformations. Consensus document of the International Union of Phlebology (IUP)-2009. Int Angiol 28: 434–451Google Scholar
  50. Lee VS, Morgan GR, Teperman LW et al. (2001) MR imaging as the sole preoperative imaging modality for right hepatectomy: a prospective study of living adult-to-adult liver donor candidates. AJR Am J Roentgenol 176: 1475–1482Google Scholar
  51. Liddle AD, Davies AH. (2007) Pelvic congestion syndrome: chronic pelvic pain caused by ovarian and internal iliac varices. Phlebology 22: 100–104Google Scholar
  52. Lindblad B, Tengborn L, Bergqvist D. (1988) Deep vein thrombosis of the axillary-subclavian veins: epidemiologic data, effects of different types of treatment and late sequelae. Eur J Vasc Surg 2: 161–165Google Scholar
  53. Martin M, Brors G. (1995) [Subclavian vein thrombosis: epidemiologic data of the PHLEKO (phlebothrombosis conservative treatment) Study]. Vasa 24: 120–125Google Scholar
  54. May R, Thurner J. (1956) Ein Gefäßsporn in der Vena iliaca communis sinistra als Ursache der überwiegend linksseitigen Thrombose der Beckenven. Z Kreislaufforsch 45: 912–922Google Scholar
  55. Moran PR. (1982) A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1: 197–203Google Scholar
  56. Morrin MM, Pedrosa I, Rofsky NM. (2002) Magnetic resonance imaging for disorders of liver vasculature. Top Magn Reson Imaging 13: 177–190Google Scholar
  57. Mulliken JB, Glowacki J. (1982) Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 69: 412–422Google Scholar
  58. Murin S, Romano PS, White RH. (2002) Comparison of outcomes after hospitalization for deep venous thrombosis or pulmonary embolism. Thromb Haemost 88: 407–414Google Scholar
  59. Nishimura DG. (1990) Time-of-flight MR angiography. Magn Reson Med 14: 194–201Google Scholar
  60. Nordstrom M, Lindblad B, Bergqvist D, Kjellstrom T. (1992) A prospective study of the incidence of deep-vein thrombosis within a defined urban population. J Intern Med 232: 155–160Google Scholar
  61. Obernosterer A, Aschauer M, Schnedl W, Lipp RW (2002) Anomalies of the inferior vena cava in patients with iliac venous thrombosis. Ann Intern Med 136: 37–41Google Scholar
  62. Ogren M, Bergqvist D, Bjorck M, Acosta S, Eriksson H, Sternby NH. (2006) Portal vein thrombosis: prevalence, patient characteristics and lifetime risk: a population study based on 23,796 consecutive autopsies. World J Gastroenterol 12: 2115–2119Google Scholar
  63. Osawa R, Kato N, Yanagi T, Yamane N. (2007) A case of Bockenheimer’s syndrome (genuine diffuse phlebectasia): venous involvement inside muscles was detected by magnetic resonance imaging. Clin Exp Dermatol 32: 664–667Google Scholar
  64. Pandey T, Shaikh R, Viswamitra S, Jambhekar K. (2010) Use of time resolved magnetic resonance imaging in the diagnosis of pelvic congestion syndrome. J Magn Reson Imaging 32: 700–704Google Scholar
  65. Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB. (1997) Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 32: 741–747Google Scholar
  66. Partsch H. (1994) Management of patients with deep venous thrombosis. JAMA 272: 593Google Scholar
  67. Pelc NJ. (1995) Flow quantification and analysis methods. Magn Reson Imaging Clin N Am 3: 413–424Google Scholar
  68. Pereles FS, Baskaran V. (2001) Abdominal magnetic resonance angiography: principles and practical applications. Top Magn Reson Imaging 12: 317–326Google Scholar
  69. Pinede L, Ninet J, Duhaut P et al. (2001) Comparison of 3 and 6 months of oral anticoagulant therapy after a first episode of proximal deep vein thrombosis or pulmonary embolism and comparison of 6 and 12 weeks of therapy after isolated calf deep vein thrombosis. Circulation 103: 2453–2460Google Scholar
  70. Prandoni P, Bernardi E, Marchiori A et al. (2004) The long term clinical course of acute deep vein thrombosis of the arm: prospective cohort study. BMJ 329: 484–485Google Scholar
  71. Prandoni P, Lensing AW, Cogo A et al (1996). The long-term clinical course of acute deep venous thrombosis. Ann Intern Med 125: 1–7Google Scholar
  72. Putnam T. (1935) »Encephalitis« and sclerotic plaques produced by venular obstruction. Arch Neurol Psychiatry 33: 929–940Google Scholar
  73. Putnam T. (1937) Evidences of vascular occlusion in multiple sclerosis and encephalomyelitis. Arch Neurol Psychiatry 37: 1298–1321Google Scholar
  74. Roebuck D, Sebire N, Lehmann E, Barnacle A. (2012) Rapidly involuting congenital haemangioma (RICH) of the liver. Pediatr Radiol 42: 308–314Google Scholar
  75. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40: 715–724Google Scholar
  76. Ruehm SG, Zimny K, Debatin JF. (2001) Direct contrast-enhanced 3D MR venography. Eur Radiol 11: 102–112Google Scholar
  77. Saadatnia M, Fatehi F, Basiri K, Mousavi SA, Mehr GK (2009) Cerebral venous sinus thrombosis risk factors. Int J Stroke 4: 111–123Google Scholar
  78. Schelling F. (1986) Damaging venous reflux into the skull or spine: relevance to multiple sclerosis. Med Hypotheses 21: 141–148Google Scholar
  79. Smith Pearl M (2008) Abdominal Aorta and inferior Vena cava. In: Mauro MA, Murphy KPJ, Thomson KR, Venbrux AC, Zollikofer CL . Image-guided Interventions. Philadelphia: Saunders Elsevier: 415–427Google Scholar
  80. Tsao J, Kozerke S (2012) MRI temporal acceleration techniques. J Magn Reson Imaging 36: 543–560Google Scholar
  81. Virchow R. (1851) Über die Erweiterung kleiner Gefäße. Arch Pathol Anat 3: 427–463Google Scholar
  82. Wattjes MP, Doepp F, Bendszus M, Fiehler J. (2011) [»Chronic cerebrospinal venous insufficiency« in multiple sclerosis – is multiple sclerosis a disease of the cerebrospinal venous outflow system?]. Rofo 183: 523–530Google Scholar
  83. Wells PS. (2007) Integrated strategies for the diagnosis of venous thromboembolism. J Thromb Haemost 5 Suppl 1: 41–50Google Scholar
  84. Zamboni P, Galeotti R, Menegatti E et al. (2009) Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 80: 392–399Google Scholar
  85. Zhang LJ, Wu X, Yang GF et al. (2013) Three-dimensional contrast-enhanced magnetic resonance venography for detection of renal vein thrombosis: comparison with multidetector CT venography. Acta Radiol Acta Radiol 54: 1125–1131Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • G.M. Kukuk
    • 1
  • A. Lakghomi
    • 1
  • W. Willinek
    • 2
  1. 1.Radiologische Klinik BonnBonn
  2. 2.Radiologische KlinikUniversitätsklinikum BonnBonn

Personalised recommendations