Advertisement

Ganzkörper-MR-Angiographie

  • C.U. Herborn

Zusammenfassung

Die Akquisition der 3D-Datensätze zur Darstellung des arteriellen Gefäßsystems bei der Ganzkörper-MRA erfolgt mit einer schnellen Gradientenecho-Sequenz (3D fast low angle shot, FLASH: repetition time [TR]: 2,1, echo time [TE]: 0,7 ms, Flipwinkel: 20°, 64 Partitionen, effektive Schichtdicke 2 mm, slab: 160 mm, Gesichtsfeld 400×400 mm, Matrix: 512×512 mit Nullinterpolation, Akquisitionszeit: 12 s). Insgesamt werden 5 Datensätze mit einer Überlappung von jeweils 3 cm akquiriert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bilecen D, Jager KA, Aschwanden M, Heidecker HG, Schulte AC, Bongartz G (2004) Cuff-compression of the proximal calf to reduce venous contamination in contrast-enhanced stepping-table magnetic Resonance angiography. Acta Radiol 45: 510–515Google Scholar
  2. Bilecen D, Schulte AC, Bongartz G et al. (2004) Infragenual cuff-compression reduces venous contamination in contrast-enhanced MR angiography of the calf. J Magn Reson Imaging 20: 347–351Google Scholar
  3. Fenchel M, Requardt M, Tomaschko K et al. (2005) Whole-body MR angiography using a novel 32-receiving-channel MR system with surface coil technology: first clinical experience. J Magn Reson Imaging 21: 596–603Google Scholar
  4. Fenchel M, Scheule AM, Stauder NI et al. (2006) Atherosclerotic disease: whole-body cardiovascular imaging with MR system with 32 receiver channels and total-body surface coil technology – initial clinical results. Radiology 238: 280–291Google Scholar
  5. Goyen M, Herborn CU, Kroger K, Lauenstein TC, Debatin JF, Ruehm SG (2003) Detection of Atherosclerosis: Systemic Imaging for Systemic Disease with Whole-Body Three-dimensional MR Angiography – Initial Experience. Radiology 227(1): 277–82Google Scholar
  6. Goyen M, Quick HH, Debatin JF et al. (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224: 270–277Google Scholar
  7. Goyen M, Ruehm SG, Debatin JF (2002) [Arterial vascular screening with whole body MR angiography]. Med Klin 97: 285–289Google Scholar
  8. Herborn CU, Ajaj W, Goyen M, Massing S, Ruehm SG, Debatin JF (2004) Peripheral vasculature: whole-body MR angiography with midfemoral venous compression--initial experience. Radiology 230: 872–878Google Scholar
  9. Herborn CU, Goyen M, Quick HH et al. (2004) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol 182: 1427–1434Google Scholar
  10. Herborn CU, Vogt FM, Goyen M, Goehde SC, Ruehm SG, Forsting M (2004) [Cardiovascular whole-body MRI: possibilities and limitations in prevention]. Radiologe 44: 826–834Google Scholar
  11. Herborn CU, Vogt FM, Waltering KU, Reiter KB, Kniemeyer HW, Barkhausen J (2004) Optimization of contrast-enhanced peripheral MR angiography with mid-femoral venous compression (VENCO). Rofo 176: 157–162Google Scholar
  12. Kramer H, Schoenberg SO, Nikolaou K et al. (2004) [Cardiovascular whole body MRI with parallel imaging]. Radiologe 44: 835–843Google Scholar
  13. Leiner T, de Vries M, Hoogeveen R, Vasbinder GB, Lemaire E, van Engelshoven JM (2003) Contrast-enhanced peripheral MR angiography at 3.0 Tesla: initial experience with a whole-body scanner in healthy volunteers. J Magn Reson Imaging 17: 609–614Google Scholar
  14. Meissner OA, Rieger J, Weber C et al. (2005) Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology 235: 308–318Google Scholar
  15. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191: 155–164Google Scholar
  16. Quick HH, Vogt FM, Maderwald S et al. (2004) High spatial resolution wholebody MR angiography featuring parallel imaging: initial experience. RöFo 176: 163–169Google Scholar
  17. Ruehm SG, Goyen M, Barkhausen J et al. (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357: 1086–1091Google Scholar
  18. Ruehm SG, Goyen M, Quick HH et al. (2000) [Whole-body MRA on a rolling table platform (AngioSURF)]. RöFo 172: 670–674Google Scholar
  19. Zhang HL, Ho BY, Chao M et al. (2004) Decreased venous contamination on 3D gadolinium-enhanced bolus chase peripheral mr angiography using thigh compression. AJR Am J Roentgenol 183: 1041–1047Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C.U. Herborn
    • 1
  1. 1.Zentrum für RadiologieUniversitätsklinikum Hamburg-EppendorfHamburg

Personalised recommendations