Advertisement

Magnetresonanztomographie der Becken-Bein-Fuß-Arterien

  • Rainer Schmitt

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Achenbach M, Figiel JH, Burbelko M et al. (2010) Prospective comparison of image quality and diagnostic accuracy of 0.5 molar Gadobenate Dimeglumine and 1.0 molar Gadobutrol in contrast-enhanced run-off magnetic resonance angiography of the lower extremities. J Magn Res Imag 32: 1166–1171Google Scholar
  2. Attenberger UI, Haneder S, Morelli JN et al. (2010) Peripheral arterial occlusive disease: evaluation of a high spatial and temporal resolution 3-T MR protocol with a low total dose of gadolinium versus conventional angiography. Radiology 257: 879–887Google Scholar
  3. Baum S, Pentecost MJ, eds. (2006) Abrams’ Angiography. Interventional Radiology. 2nd ed., Lippincott & Wilkins. PhiladelphiaGoogle Scholar
  4. Bezooijen R, van den Bosch HC et al. (2004) Peripheral arterial disease: sensitivity-encoded multiposition MR angiography compared with intraarterial angiography and conventional multiposition MR angiography. Radiology 231: 263–271Google Scholar
  5. Bonel HM, Saar B, Hoppe H et al. (2009) MR angiography of infrapopliteal arteries in patients with peripheral arterial occlusive disease by using Gadofosveset at 3.0 T: diagnostic accuracy compared with selective DSA. Radiology 253: 879–890Google Scholar
  6. Bui BT, Miller S, Mildenberger P et al. (2010) Comparison of contrast-enhanced MR angiography to intraarterial digital subtraction angiography for evaluation of peripheral arterial occlusive disease: results of a phase III multicenter trial. J Magn Reson Imaging 31: 1402–1410Google Scholar
  7. Burbelko M, Augsten M, Kalinowski MO et al. (2013) Comparison of contrastenhanced multi-station MR angiography and digital subtraction angiography of the lower extremity arterial disease. J Magn Reson Imaging 37: 1427–1435Google Scholar
  8. Dorenbeck U, Seitz U, Volk M et al. (2002) Evaluation of arterial bypass grafts of the pelvic and lower extremities with gadolinium-enhanced magnetic resonance angiography: Comparison with digital subtraction angiography. Invest Radiol 37: 60–64Google Scholar
  9. Floery D, Fellner FA, Fellner C et al. (2011) Zeitaufgelöste MR-Angiografie der Becken-Bein-Etage: Ein Lösungsansatz für das Problem der venösen Überlagerungen. Fortschr Röntgenstr 183: 136–143Google Scholar
  10. Goyen M, Debatin JF (2003) Gadobenate dimeglumine (MultiHance) for magnetic resonance angiography: review of the literature. Eur Radiol 13 (Suppl 3): N19–27Google Scholar
  11. Hadizadeh DR, Gieseke J, Lohmaier SH et al. (2008) Peripheral MR angiography with blood pool contrast agent: Prospective intraindividual comparative steady-state MR angiography versus standard-resolution first-pass MR angiography and DSA. Radiology 249: 701–711Google Scholar
  12. Haider CR, Glockner JF, Stanson AW et al. (2009) Peripheral vasculature: hightemporal-and high-spatial-resolution three-dimensional contrastenhanced MR angiography. Radiology 253: 831–843Google Scholar
  13. Hansmann J, Michaely HJ, Morelli JN et al. (2013) Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station. Am J Roentgenol 201: 1368–1375Google Scholar
  14. Hentsch A, Aschauer MA, Balzer JO et al. (2003) Gadobutrol-enhanced moving-table magnetic resonance angiography in patients with peripheral vascular disease: a prospective, multi-entre blinded comparison with digital subtraction angiography. Eur Radiol 13: 2103–2114Google Scholar
  15. Hepp W, Kogel H, Hrsg. (2007) Gefäßchirurgie. 2. Aufl., Urban & Fischer. München, JenaGoogle Scholar
  16. Khilnani NM, Winchester PA, Prince MR et al. (2002) Peripheral vascular disease: combined 3D bolus chase and dynamic 2D MR angiography compared with x-ray angiography for treatment planning. Radiology 224: 63–74Google Scholar
  17. Kinner S, Quick HH, Maderwald S et al. (2013) Triple-TWIST MRA: high spatial and temporal resolution MR angiography of the entire peripheral vascular system using a time-resolved 4D MRA technique. Eur Radiol 23: 298–306Google Scholar
  18. Konkus CJ, Czum JM, Jacobacci JT (2002) Contrast-enhanced MR angiography of the aorta and lower extremities with routine inclusion of the feet. AJR Am J Roentgenol 179: 115–117Google Scholar
  19. Koziel K, Attenberger UI, Lederle K et al. (2011) Peripheral MRA with continuous table movement: imaging speed and robustness compared to a conventional stepping table technique. Eur J Radiol 80: 537–542Google Scholar
  20. Kramer JH, Grist TM (2012) Peripheral MR Angiography. Magn Reson Imaging Clin N Am 20: 761–776Google Scholar
  21. Kreitner KF, Kalden P, Neufang A et al. (2000) Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced threedimensional MR angiography with conventional digital subtraction angiography. Am J Roentgenol 174: 171–179Google Scholar
  22. Kreitner KF, Schmitt R (2007) MultiHance-enhanced MR angiography of the peripheral run-off vessels in patients with diabetes. Eur Radiol 17 (Suppl 6): F63–68Google Scholar
  23. Leiner T, Ho KYJAM, Nelemans PJ et al. (2000) Three-dimensional contrastenhanced moving-bed infusion-tracking (MoBi-Track) peripheral MR angiography with flexible choice of imaging parameters for each field of view. J Magn Reson Imaging 11: 368–377Google Scholar
  24. Leiner T, Nijenhuis RJ, Maki JH et al. (2004) Use of a three-station phased array coil to improve peripheral contrast-enhanced magnetic resonance angiography. J Magn Reson Imaging 20: 417–425Google Scholar
  25. Leiner T, Kessels AG, Schurink GW et al. (2004) Comparison of contrast-enhanced magnetic resonance angiography and digital subtraction angiography in patients with chronic critical ischemia and tissue loss. Invest Radiol 39: 435–444Google Scholar
  26. Leiner T, Kessels AG, Nelemans PJ et al. (2005) Peripheral arterial disease: comparision of color duplex US and contrast-enhanced MR angiography for diagnosis. Radiology 235: 699–708Google Scholar
  27. Lenhart M, Finkenzeller T, Paetzel C et al. (2002) Kontrastverstärkte MR-Angiographie der Becken- und Beingefäße in der klinischen Routinediagnostik. Fortschr Rontgenstr 174: 1289–1295Google Scholar
  28. Lippert H, Pabst R (1985) Arterial Variations in Man. Classification and Frequency. Springer, BerlinGoogle Scholar
  29. Loewe C, Schoder M, Rand T et al. (2002) Peripheral vascular occlusive disease: evaluation with contrast-enhanced moving-bed MR angiography versus digital subtraction angiography in 106 patients. Am J Roentgenol 179: 1013–1021Google Scholar
  30. Malcolm PN, Craven P, Klass D (2010) Pitfalls and artefacts in performance and interpretation of contrast-enhanced MR angiography of the lower limbs. Clin Radiol 65: 651–658Google Scholar
  31. Meaney JFM. (2003) Magnetic resonance angiography of the peripheral arteries: current status. Eur Radiol 13: 836–852Google Scholar
  32. Morasch MD, Collins J, Pereles FS et al. (2003) Lower extremity stepping-table magnetic resonance angiography with multilevel contrast timing and segmented contrast infusion. J Vasc Surg 37: 62–71Google Scholar
  33. Norgren L, Hiatt WR, Dormandy JA et al. (2007) Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg 33(Suppl 1): S1–S75Google Scholar
  34. Prince MR, Chenevert TL, Foo TK et al. (1997) Contrast-enhanced abdominal MR angiography: Optimization of imaging delay time by automating the detection of contrast material arrival in the aorta. Radiology 203: 109–114Google Scholar
  35. Prince MR, Chabra SG, Watts R et al. (2002) Contrast material travel times in patients undergoing peripheral MR angiography. Radiology 224: 55–61Google Scholar
  36. Rich NM, Collins GJ Jr, McDonald PT et al. (1979) Popliteal vasculature entrapment. Its increasing interest. Arch Surg 114: 1377–1384Google Scholar
  37. Rubins GD, Rofsky NM, eds. (2008) CT and MR Angiography. Comprehensive Vascular Assessment. Lippincott, Williams & Wilkins. PhiladelphiaGoogle Scholar
  38. Rutherford RB, Baker JD, Ernst C et al. (1997) Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg 26 :517–538Google Scholar
  39. Rutherford RB. (2005) Vascular Surgery. 6th ed., Saunders, PhiladelphiaGoogle Scholar
  40. Schmitt R, Christopoulos G, Brunner S et al. (2001) MR-Angiographie der Becken-Bein-Arterien: Beginn mit zeitaufgelöster Datenakquisition an den Unterschenkeln. Röntgenpraxis 54: 83–92Google Scholar
  41. Schmitt R, Coblenz G, Cherevatyy O et al. (2005) Comprehensive MR angiography of the lower limbs: a hybrid dual-bolus approach including the pedal arteries. Eur Radiol 15: 2513–2524Google Scholar
  42. Schoenberg SO, Londy FJ Licato P et al. (2001) Multiphase-multistep gadolinium-enhanced MR angiography of the abdominal aorta and runoff vessels. Invest Radiol 36: 283–291Google Scholar
  43. Stary HC, Chandler AB, Dismore RE et al. (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation 92: 1355–1374Google Scholar
  44. Swan JS, Carroll TJ, Kennell TW et al. (2002) Time-resolved three-dimensional contrast-enhanced MR angiography of the peripheral vessels. Radiology 225: 43–52Google Scholar
  45. van den Bosch HC, Westenberg JJ, Caris R et al. (2013) Peripheral arterial occlusive disease: 3.0-T versus 1.5-T MR angiography compared with digital subtraction angiography. Radiology 266: 337–346Google Scholar
  46. Versluis B, Backes WH, van Eupen MG et al. (2011) Magnetic resonance imaging in peripheral arterial disease: reproducibility of the assessment of morphological and functional vascular status. Invest Radiol 46: 11–24Google Scholar
  47. Wang Y, Chen CZ, Chabra SG et al. (2002) Bolus arterial-venous transit in the lower extremity and venous contamination in bolus chase three-dimensional magnetic resonance angiography. Invest Radiol 37: 458–463Google Scholar
  48. Wright LB, Matchett WJ, Cruz CP et al. (2004) Popliteal artery disease: diagnosis and treatment. Radiographics 24: 467–479Google Scholar
  49. Zhang HL, Kent KC, Bush HL et al. (2004) Soft tissue enhancement on timeresolved peripheral magnetic resonance angiography. J Magn Reson Imaging 19: 590–597Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rainer Schmitt
    • 1
  1. 1.Klinik für Diagnostische und Interventionelle RadiologieHerz- und Gefäß-Klinik GmbHBad Neustadt

Personalised recommendations