Design Flow Automation for Silicon Photonics: Challenges, Collaboration, and Standardization

  • Mitchell Heins
  • Chris Cone
  • John Ferguson
  • Ruping Cao
  • James Pond
  • Jackson Klein
  • Twan Korthorst
  • Arjen Bakker
  • Remco Stoffer
  • Martin Fiers
  • Amit Khanna
  • Wim Bogaerts
  • Pieter Dumon
  • Kevin Nesmith
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 122)

Abstract

Silicon photonics is nothing new. It has been around for decades, but in recent years, it has gained traction as electronic design challenges increase drastically with their atomic-level limitations. Silicon photonics has made significant advancements during this period, but there are many obstacles without an acceptable level of comfort as seen by the lack of semiconductor community involvement. Apart from a series of technological barriers, such as extreme fabrication sensitivity, inefficient light generation on-chip, etc., there are also certain design challenges. In this chapter, we will discuss the challenges and the opportunities in photonic integrated circuit design software tools, examine existing design flows for photonics design and how these fit different design styles, and review the activities in collaboration and standardization efforts to improve design flows.

References

  1. 1.
    C. Mead, L. Conway, Introduction to VLSI Systems, 1st edn. (Addison-Wesley, New York, 1979)Google Scholar
  2. 2.
  3. 3.
    Open Verilog International, Verilog-A Language Reference Manual: Analog Extension to Verilog HDL, Version 1.0, http://www.eda.org/verilog-ams (1996)
  4. 4.
    S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010)CrossRefGoogle Scholar
  5. 5.
    W. Bogaerts, M. Fiers, P. Dumon, Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20(4) (2014)Google Scholar
  6. 6.
    S. Dwivedi, H. D’heer, W. Bogaerts, Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filtering devices. Photonics Technol. Lett. 27(8), 871–874 (2015)Google Scholar
  7. 7.
    ISO Standard 11146, Lasers and laser-related equipment: Test methods for laser beam widths, divergence angles and beam propagation ratios (2005)Google Scholar
  8. 8.
    The IBIS Open Forum, IBIS Modeling Cookbook: For IBIS Version 4.0, http://www.eda.org/ibis (2005)
  9. 9.
    P. Mena, S.-M. Steve Kang, T. De Temple, Rate-equation-based laser models with a single solution regime. J. Lightwave Technol. 15(4), 717–730 (1997)Google Scholar
  10. 10.
    J. Klein, J. Pond, Simulation and Optimization of Photonic Integrated Circuits. Advanced Photonics Congress, OSA Technical Digest, paper IM2B.2 (2012)Google Scholar
  11. 11.
    M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, P. Bienstman, Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach. J. Opt. Soc. Am. B 29(5), 896–900 (2012)Google Scholar
  12. 12.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2004)Google Scholar
  13. 13.
  14. 14.
    B. Gustavsen, A. Semlyen, Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14(3) (1999)Google Scholar
  15. 15.
    G. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley, New York, 2002)Google Scholar
  16. 16.
    T. Baehr-Jones, Ultralow drive voltage silicon traveling-wave modulator. Opt. Express 20, 12014–12020 (2012)CrossRefADSGoogle Scholar
  17. 17.
    X. Wang, J. Pond, J. Klein, A.E-J. Lim, K.K. Chen G-Q. Lo, Enabling scalable silicon photonic circuit design and fabrication. OECC, Shanghai, China (2015)Google Scholar
  18. 18.
    N. Dessislava et al., Scaling silicon photonic switch fabrics for data center interconnection networks. Opt. Express 23(2), 1159–1175 (2015)Google Scholar
  19. 19.
    J. Ruiqiang et al., Five-port optical router for photonic networks-on-chip. Opt. Express 19(21), 20258–20268 (2011)Google Scholar
  20. 20.
    E. Lach, W. Idler, Modulation formats for 100G and beyond. Opt. Fiber Technol. 17(5), 377–386 (2011)CrossRefADSGoogle Scholar
  21. 21.
    Luceda Photonics, IPKISS, http://www.lucedaphotonics.com/
  22. 22.
  23. 23.
    PhoeniX Software, OptoDesigner, http://www.phoenixbv.com/optodesigner
  24. 24.
    W. Bogaerts, Design Challenges in Large-Scale Silicon Photonics, in Design Automation Conference, Austin (2013)Google Scholar
  25. 25.
    R. Cao, J. Ferguson, F. Gays, Y. Drissi, A. Arriordaz, I. Connor, Silicon Photonics Design Rule Checking: Application of a Programmable Modeling Engine for Non-Manhattan Geometry Verification, in IFIP/IEEE 22nd International Conference on Very Large Scale Integration (VLSI-SoC), Playa del Carmen (2014)Google Scholar
  26. 26.
    R. Cao, J. Billoudet, J. Ferguson, L. Couder, J. Cayo, A. Arriordaz, C. Lyon, LVS Check for Photonic Integrated Circuits: Curvilinear Feature Extraction and Validation, in DATE Conference, Grenoble, France (2015)Google Scholar
  27. 27.
    J. Li, L. O’Faolain, S. Schulz, T.F. Krauss, Low loss propagation in slow light photonic crystal waveguides at group indices up to 60. Photonics Nanostruct. Fundam. Appl. 10(4), 589–593 (2012)Google Scholar
  28. 28.
    P. Cheben, J. Lapointe, D. Xu, S. Janz, M. Vachon, S. Wang, P. Bock, D. Benedikovic, R. Halir, A. Ortega-Monux, C. Ramos, J. Perez, I. Molina-Fernandez, Silicon photonic integration with subwavelength gratings, in IEEE 16th International Conference on Transparent Optical Networks (ICTON), (2014), pp. 1–2Google Scholar
  29. 29.
    Y. Vlasov, M. O’Boyle, H. Hamann, S. McNab, Active control of slow light on a chip with photonic crystal waveguides. Nature 438(7064), 65–69 (2005)CrossRefADSGoogle Scholar
  30. 30.
    D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum Electron. 38(7), 949–955 (2002)CrossRefADSGoogle Scholar
  31. 31.
    W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010)CrossRefGoogle Scholar
  32. 32.
    E. Dulkeith, F. Xia, L. Schares, W. Green, Y. Vlasov, Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14(9), 3853–3863 (2006) (Optical Society of America)Google Scholar
  33. 33.
    Lumerical, Unified Design Flow for Silicon Photonics, http://www.lumerical.com/tcad-products/interconnect/eda/mentor_graphics/
  34. 34.
    Lumerical, PhoeniX Software Integration, http://www.lumerical.com/phoenix/
  35. 35.
  36. 36.
  37. 37.
  38. 38.
    Interview with Sumit Dasgupta, Vice President of Engineering for Si2 from 2003 to 2013, March 27, 2015Google Scholar
  39. 39.
  40. 40.
    PDAFlow Foundation, Enschede, The Netherlands, http://www.pdaflow.org
  41. 41.
    Filarete, Milano, Italy, http://www.aspicdesign.com
  42. 42.
    Optiwave, Ottawa, Canada, http://www.optiwave.com
  43. 43.
    Photon Design, http://www.photond.com
  44. 44.
    VPI Photonics, Berlin, Germany, http://www.vpiphotonics.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mitchell Heins
    • 1
  • Chris Cone
    • 1
  • John Ferguson
    • 1
  • Ruping Cao
    • 2
  • James Pond
    • 3
  • Jackson Klein
    • 3
  • Twan Korthorst
    • 4
  • Arjen Bakker
    • 4
  • Remco Stoffer
    • 4
  • Martin Fiers
    • 5
  • Amit Khanna
    • 6
  • Wim Bogaerts
    • 5
    • 6
    • 7
  • Pieter Dumon
    • 5
    • 6
    • 7
  • Kevin Nesmith
    • 8
    • 9
  1. 1.Mentor Graphics Corp.WilsonvilleUSA
  2. 2.Mentor Graphics Corp.Meudon La ForêtFrance
  3. 3.Lumerical Solutions, Inc.VancouverCanada
  4. 4.PhoeniX SoftwareEnschedeThe Netherlands
  5. 5.Luceda PhotonicsDendermondeBelgium
  6. 6.IMECHeverleeBelgium
  7. 7.Ghent University-IMEC, INTEC-DepartmentGhentBelgium
  8. 8.Unified Research, Academic, & Production InstituteAustinUSA
  9. 9.Engineering Design, Development, & Research SoftwareAustinUSA

Personalised recommendations