Silicon Optical Interposers for High-Density Optical Interconnects

  • Yutaka Urino
  • Takahiro Nakamura
  • Yasuhiko Arakawa
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 122)

Abstract

One of the most serious challenges in the information industry is bandwidth bottlenecks in inter-chip interconnects. We proposed a photonics–electronics convergence system in response to this issue, demonstrated silicon optical interposers integrated with all optical components on a silicon substrate, and achieved a high bandwidth density of 30 Tbps/cm2, which is sufficient for the needs of the late 2010s.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    M. Black, Hybrid Memory Cube, in Electronic Design Process Symposium (2013), http://www.eda.org/edps/edp2013/Papers/3-3%20FINAL%20for%20Mike%20Black.pdf
  7. 7.
    International Technology Roadmap for Semiconductors 2012 Update, Overall Roadmap Technology Characteristics (ORTC) Tables, and Assembly and Packaging Tables, http://www.itrs.net/ITRS%201999-2014%20Mtgs,%20Presentations%20&%20Links/2012ITRS/Home2012.htm
  8. 8.
    1.I.A. Young, E.M. Mohammed, J.T.S. Liao, A.M. Palermo, B.A. Block, M.R. Reshotko, P.L.D. Chang, Optical technology for energy efficient I/O in high performance computing. IEEE Commun. Mag. 48, 184–191 (2010)Google Scholar
  9. 9.
    L. Chen, K. Preston, S. Manipatruni, M. Lipson, Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Opt. Express 17, 15248–15256 (2009)CrossRefADSGoogle Scholar
  10. 10.
    K. Raj, J.E. Cunningham, R. Ho, X. Zheng, H. Schwetman, P. Koka, M. McCracken, J. Lexau, G. Li, H. Thacker, I. Shubin, Y. Luo, J. Yao, M. Asghari, T. Pinguet, J. Mitchell, A.V. Krishnamoorthy, ’Macrochip’ computer systems enabled by silicon photonic interconnects. Proc. SPIE 7607, 1–16 (2010)ADSGoogle Scholar
  11. 11.
    G. Kim, J.W. Park, I.G. Kim, S. Kim, S. Kim, J.M. Lee, G.S. Park, J. Joo, K.S. Jang, J.H. Oh, S.A. Kim, J.H. Kim, J.Y. Lee, J.M. Park, D.W. Kim, D.K. Jeong, M.S. Hwang, J.K. Kim, K.S. Park, H.K. Chi, H.C. Kim, D.W. Kim, M.H. Cho, Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s. Opt. Express 19, 26936–26947 (2011)CrossRefADSGoogle Scholar
  12. 12.
    Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51, 72–77 (2013)CrossRefGoogle Scholar
  13. 13.
    R.E. Camacho-Aguilera, Y. Cai, N. Patel, J.T. Bessette, M. Romagnoli, L.C. Kimerling, J. Michel, An electrically pumped germanium laser. Opt. Express 20, 11316–11320 (2012)CrossRefADSGoogle Scholar
  14. 14.
    P.D. Dobbelaere, Light source approach for silicon photonics transceivers, in Sunday workshop in ECOC, WS1 (2014), http://www.ecoc2014.org/uploads/Workshops/WS1/ECOC2014_WS1_Peter%20De%20Dobbelaere.pdf
  15. 15.
    M.N. Sysak, H. Park, A.W. Fang, J.E. Bowers, R. Jones, O. Cohen, O. Raday, M. Paniccia, “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser. Opt. Express 15, 15041–15046 (2007)CrossRefADSGoogle Scholar
  16. 16.
    T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection, in Proceedings of Group IV Photonics (2011), pp. 181–183Google Scholar
  17. 17.
    N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, Y. Arakawa, 2.2 pJ/bit operation of hybrid integrated light source on a silicon optical interposer for optical interconnection, in Proceedings of IEEE Photonic Conference (2013), pp. 254–255Google Scholar
  18. 18.
    Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, Y. Arakawa, First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon substrate. Opt. Express 19, B159–B165 (2011)CrossRefGoogle Scholar
  19. 19.
    N. Hirayama, H. Takahashi, Y. Noguchi, M. Yamagishi, T. Horikawa, Low-loss Si waveguides with variable-shaped-beam EB lithography for large-scaled photonic circuits, in Extended Abstract Solid State Devices and Materials (2012), pp. 530–531Google Scholar
  20. 20.
    T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, Multichannel and high-density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for interchip optical interconnection. Photon. Res. 2, A19–A24 (2014)CrossRefGoogle Scholar
  21. 21.
    N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, Y. Arakawa, A hybrid integrated light source on a silicon platform using a trident spot-size converter. J. Lightwave Technol. 32, 1329–1336 (2014)CrossRefADSGoogle Scholar
  22. 22.
    T. Shimizu, M. Ishizaka, N. Hatori, M. Okano, T. Yamamoto, M. Mori, Y. Urino, T. Nakamura, Y. Arakawa, Multi-channel hybrid integrated light source for ultra-high-bandwidth optical interconnections and its structural optimization for low power consumption by considering thermal interference between LD array. Trans. Jpn. Inst. Elect. Pack. 7, 94–103 (2014)CrossRefGoogle Scholar
  23. 23.
    L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, 40 Gbit/s silicon optical modulator for high speed applications. Electron. Lett. 43, 1196–1197 (2007)CrossRefGoogle Scholar
  24. 24.
    D.J. Thomson, F.Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, G.T. Reed, High contrast 40 Gb/s optical modulation in silicon. Opt. Express 19, 11507–11516 (2011)CrossRefADSGoogle Scholar
  25. 25.
    P. Dong, L. Chen, Y.-K. Chen, High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express 20, 6163–6169 (2012)CrossRefADSGoogle Scholar
  26. 26.
    S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Takahashi, N. Hirayama, H. Takahashi, Y. Noguchi, H. Okayama, T. Horikawa, T. Usuki, 12.5-Gb/s operation with 0.29-V•cm VπL using silicon Mach-Zehnder modulator based-on forward-biased pin diode. Opt. Express 20, 2911–2923 (2012)CrossRefADSGoogle Scholar
  27. 27.
    J. Fujikata, M. Miura, M. Noguchi, D. Okamoto, T. Horikawa, Y. Arakawa, Si waveguide-integrated metal–semiconductor–metal and p–i–n-type Ge photodiodes using Si-capping layer. Jpn. J. Appl. Phys. 52, 04CG10 (2013)Google Scholar
  28. 28.
    Y. Urino, T. Usuki, J. Fujikata, M. Ishizaka, K. Yamada, T. Horikawa, T. Nakamura, Y. Arakawa, High-density and wide-bandwidth optical interconnects with silicon optical interposers. Photon. Res. 2, A1–A7 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Arakawa, H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982)CrossRefADSGoogle Scholar
  30. 30.
    A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express 20, 22181–22187 (2012)CrossRefADSGoogle Scholar
  31. 31.
    A.Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J.M. Fastenau, A.W.K. Liu, A.C. Gossard, J.E. Bowers, High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett. 104, 041104-1–-4 (2014)Google Scholar
  32. 32.
    K. Tanabe, T. Rae, K. Watanabe, Y. Arakawa, High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding. Appl. Phys. Express 6, 082703-1-4 (2013)Google Scholar
  33. 33.
    T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, T. Usuki, 50-Gb/s ring-resonator-based silicon modulator. Opt. Express 21, 11869–11876 (2013)CrossRefADSGoogle Scholar
  34. 34.
    K. Padmaraju, D.F. Logan, T. Shiraishi, J.J. Ackert, A.P. Knights, K. Bergman, Wavelength locking and thermally stabilizing microring resonators using dithering signals. J. Lightwave Technol. 32, 505–515 (2014)CrossRefADSGoogle Scholar
  35. 35.
    X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S.S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.H. Lee, K. Raj, R. Ho, J.E. Cunningham, A.V. Krishnamoorthy, A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control. Opt. Express 22, 12628–12633 (2014)CrossRefADSGoogle Scholar
  36. 36.
    E. Timurdogan, C.M.S. Agaskar, J. Sun, E.S. Hosseini, A. Biberman, M.R. Watts, An ultralow power athermal silicon modulator. Nat. Commun. 5(4008), 1–11 (2014)Google Scholar
  37. 37.
    S. Akiyama, T. Baba, M. Imai, M. Mori, T. Usuki, High-performance silicon modulator for integrated transceivers fabricated on 300-mm wafer, in Proceedings of ECOC, P.2.8 (2014)Google Scholar
  38. 38.
    Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, Y. Arakawa, First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 ºC. J. Lightwave Technol. 33, 1223–1229 (2015)CrossRefADSGoogle Scholar
  39. 39.
    D. Okamoto, Y. Urino, T. Akagawa,, S. Akiyama, T. Baba, T. Usuki, M. Miura, J. Fujikata, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, H. Takahashi, Y. Noguchi, M. Noguchi, M. Imai, M. Yamagishi, S. Saitou, N. Hirayama, M. Takahashi, E. Saito, D. Shimura, H. Okayama, Y. Onawa, H. Yaegashi, H. Nishi, H. Fukuda, K. Yamada, M. Mori, T. Horikawa, T. Nakamura, Y. Arakawa, Demonstration of 25-Gbps optical data links on silicon optical interposer using FPGA transceiver, in Proceedings of ECOC, P.2.11 (2014)Google Scholar
  40. 40.
    T. Shimizu, M. Okano, H. Takahashi, N. Hatori, M. Ishizaka, T. Yamamoto, M. Mori, T. Horikawa, Y. Urino, T. Nakamura, Y. Arakawa, Demonstration of over 1000-channel hybrid integrated light source for ultra-high bandwidth interchip optical interconnection, in Proceedings of OFC, Th1C.6 (2014)Google Scholar
  41. 41.
    S. Akiyama, T. Usuki, High-speed and efficient silicon modulator based on forward-biased pin diodes. Front. Phys. 2(65), 1–7 (2014)Google Scholar
  42. 42.
    H. Takahashi, M. Toyama, M. Seki, D. Shimura, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, E. Ishitsuka, T. Sano, T. Horikawa, The impacts of ArF Excimer Immersion Lithography on Integrated Silicon Photonics Technology, in Ext. Abst. Solid State Devices and Materials (2012), pp. 528–529Google Scholar
  43. 43.
    H. Okayama, D. Shimura, Y. Onawa, H. Takahashi, M. Seki, K. Koshino, N. Yokoyama, M. Oshtsuka, T. Tsuchizawa, H. Nishi, K. Yamada, H. Yaegashi, T. Horikawa, H. Sasaki, Si wire array waveguide grating with stray light reduction scheme fabricated by ArF excimer immersion lithography. Electron. Lett. 49, 1401–1402 (2013)CrossRefGoogle Scholar
  44. 44.
    T. Amano, S. Ukita, Y. Egashira, M. Sasaki, M. Mori, K. Kurata, A 25-Gbps operation of polymer-based optical and electrical hybrid LSI package substrate with optical card edge connector, in Proceedings of IEEE Optical interconnects conference, WB2 (2015)Google Scholar
  45. 45.
    K. Yashiki, Y. Suzuki, Y. Hagihara, M. Kurihara, M. Tokushima, J. Fujikata, A. Ukita, K. Takemura, T. Shimizu, D. Okamoto, J. Ushida, S. Takahashi, T. Uemura, M. Okano, J. Tsuchida, T. Nedachi, M. Fushimi, I. Ogura, J. Inasaka, K. Kurata, 5 mW/Gbps hybrid-integrated Si-photonics-based optical I/O cores and their 25-Gbps/ch error-free operation with over 300-m MMF, in Proceedings of OFC, Th1G.1 (2015)Google Scholar
  46. 46.
    J. Petrilla, 100G MMF Reach Objective, in IEEE P802.3 Next Generation 100 Gb/s Optical Ethernet Study Group Plenary Meeting (2012), http://www.ieee802.org/3/100GNGOPTX/public/mar12/plenary/petrilla_02b_0312_NG100GOPTX.pdf
  47. 47.
    J. Petrilla, 100G PSM4 Power, Size & Cost Estimates & Comparisons, in IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force Interim Meeting (2013), http://www.ieee802.org/3/bm/public/jan13/petrilla_03a_0113_optx.pdf
  48. 48.
    H.C. Nguyen, S. Hashimoto, M. Shinkawa, T. Baba, Compact and fast photonic crystal silicon optical modulators. Opt. Express 20, 22465–22474 (2012)Google Scholar
  49. 49.
    A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P.C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, J. Leuthold, High-speed plasmonic phase modulators. Nat. Photonics 8, 229–233 (2014)CrossRefADSGoogle Scholar
  50. 50.
    Y. Kim, M. Takenaka, T. Osada, M. Hata, S. Takagi, Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators. Sci. Rep. 4, 4683 (2014)ADSGoogle Scholar
  51. 51.
    S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yutaka Urino
    • 1
  • Takahiro Nakamura
    • 1
  • Yasuhiko Arakawa
    • 2
  1. 1.Photonics Electronics Technology Research Association (PETRA)TsukubaJapan
  2. 2.Institute for Nano Quantum Information Electronics (NanoQuine)The University of TokyoMeguro-KuJapan

Personalised recommendations